دورية أكاديمية

Machine learning in classification and identification of nonconventional vegetables.

التفاصيل البيبلوغرافية
العنوان: Machine learning in classification and identification of nonconventional vegetables.
المؤلفون: Ossani PC; Department of Statistics, State University of Maringá, Av. Colombo, 5790, Bloco E-90, University Campus, Maringá, Paraná, 87020-900, Brazil., de Souza DC; Department of Agriculture, Federal University of Lavras, UFLA, University Campus, s/n, mailbox 3037, Lavras, MG, 37200-000, Brazil., Rossoni DF; Department of Statistics, State University of Maringá, Av. Colombo, 5790, Bloco E-90, University Campus, Maringá, Paraná, 87020-900, Brazil., Resende LV; Department of Agriculture, Federal University of Lavras, UFLA, University Campus, s/n, mailbox 3037, Lavras, MG, 37200-000, Brazil.
المصدر: Journal of food science [J Food Sci] 2020 Dec; Vol. 85 (12), pp. 4194-4200. Date of Electronic Publication: 2020 Nov 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
مواضيع طبية MeSH: Machine Learning* , Nutritive Value* , Vegetables*, Models, Statistical ; Plant Leaves
مستخلص: Vegetables are important in economic, social, and nutritional matters in both the Brazilian and international scenes. Hence, some researches have been carried out in order to encourage the production and consumption of different species such as nonconventional vegetables. These vegetables have an added value because of their nutritional quality and nostalgic appeal due to the reintroduction of these species. For this reason, this article proposes the use of the machine learning technique in the construction of models for supervised classification and identification in an experiment with five leafy special of nonconventional vegetables (Tropaeolum majus, Rumex acetosa, Stachys byzantina, Lactuca cf. indica e Pereskia aculeata) assessing the characteristics of the macro and micro nutrients. In order to evaluate the classifiers' performance, the cross-validation procedure via Monte Carlo simulation was considered to confirm the model. In ten replications, the success and error rates were obtained, considering the false positive and false negative rates, sensibility, and accuracy of the classification method. Thus, it was concluded that the use of machine learning is viable because it allows the classification and identification of nonconventional vegetables using few nutritional attributes and obtaining a success rate of over 89% in most of the classifiers tested.
(© 2020 Institute of Food Technologists®.)
References: Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine learning, 6, 37-66.
Alpaydin, E. (2010). Introduction to machine learning. Adaptive Computation and machine learning Series. Cambridge, MA: MIT Press.
Atkeson, C., Moore, A., & Schaal, S. (1997). Locally weighted learning. Artificial Intelligence Review, 11, 11-73.
Botrel, N., Freitas, S., Fonseca, M. J. O., Melo, R. A. C., Madeira, N. (2020).Nutricional de hortaliças folhosas não convencionais cultivadas no Bioma Cerrado. Brazilian Journal of Food Technology, 23, e2018174.
Brasil. Ministério da Agricultura, Pecuária e Abastecimento: Secretaria de Desenvolvimento Agropecuário e Cooperativismo. (2013). Manual de Hortaliças Não Convencionais (pp. 99). Brasília, Brazil: MAPA/ACS.
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Cleary, J. G., & Trigg, L. E. K. (1995). K:: An instance-based learner using an entropic distance measure. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, July 9-12. (pp. 108-114).
Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, July 9-12. (pp. 115-123).
Cortes, C., & Vapnik, V. (1995). Support vector machine. Machine Learning, 20(3), 273-297.
Espezua, S., Villanueva, E., Maciel, C. D., & Carvalho, A. (2015). A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. Neurocomputing, 149, 767-776.
FAO - Food and Agriculture Organization of the United Nations. World Health Organization - WHO. (2001). Human vitamin and mineral requirements. Food and Agriculture Organization, World Health Organization Report, 7th Joint FAO/OMS Expert Consultation (pp. 286). Bangkok, Thailand: FAO/WHO.
FAO - Food and Agriculture Organization of the United Nations (2006). Undernourishment around the world: Counting the hungry: Latest estimates. Retrieved from http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/006/j0083e/j0083e00.htm.
Femling, F., Olsson, A., & Alonso-Fernandez, F. (2018). Fruit and vegetable identification using machine learning for retail applications. Paper presented at 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Las Palmas de Gran Canaria, Spain. Retrieved from https://doi.org/10.1109/SITIS.2018.00013.
Frank, E., Hall, M., & Pfahringer, B. (2003). Locally weighted naive bayes. In U. Kjaerulff & C. Meek (Eds.), UAI'03: Proceedings of the nineteenth conference on uncertainty in artificial intelligence (pp. 249-256). San Francisco, CA: Morgan Kaufmann Publisher.
Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine Learning, 32(1), 63-76.
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In L. Saitta (Ed.), ICML'96: Proceedings of the thirteenth international conference on international conference on machine learning (pp. 148-156). San Francisco, CA: Morgan Kaufmann Publisher.
Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting. Stanford University.
Friedman, J. H., & Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transaction on Computers, 23(9), 881-890.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832-844.
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.
Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In KDD '01: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 97-106). New York: Association for Computing Machinery.
John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In P. Besnard & S. Hanks (Eds.), UAI'95: Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp. 338-345). San Francisco, CA: Morgan Kaufmann Publisher.
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13(3), 637-649.
Kohavi, R. (1995). The power of decision tables. In N. Lavrao & S. Wrobel (Eds.), Machine Learning: ECML-95 8th European conference on machine learning Heraclion, Crete, Greece, April 25-27, 1995 Proceedings (pp. 174-189). Berlin, Greece: Springer.
Landwehr, N., Hall, M., & Frank, E. (2006). Logistic model trees. Dordrecht, the Netherlands: Kluwer Academic Publishers.
Lakshmi, D. C. (2014). Comparative analysis of random forest, REP tree and J48 classifiers for credit risk prediction. IJCA, Proceeding on International Conference on Communication, Computing and Information Technology (ICCCMIT-2014), 3, 30-36.
Lee, E. K., Cook, D., Klinke, S., & Lumley, T. (2005). Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics, 14(4), 831-846.
Le Cessie, S., & Van Houwelingen, J. C. (1992). Ridge estimators in logistic regression. Applied Statistics, 41(1), 191-201.
Malavolta, E. (1981). Manual de química agrícola: Adubos e adubação (3. ed.). São Paulo, Brazil: Ceres.
Mccallum, N., & Nigam, K. (1998). A comparison of event models for naive bayes text classification. Paper presented at AAAI-98 Workshop on ‘Learning for Text Categorization’, July 26-27, Madison, WI.
Mitchell, T. M. (1997). Machine learning (pp. 421). New York: Mc-Graw Hill.
Oliver, J. J., & Hand, D. (1994). Averaging over decision stumps. Lecture Notes in Computer Science, 784, 231-241.
Ossani, P. C., & Cirillo, M. A. (2020). MVar: Multivariate analysis. R package version 2.1.2. https://cran.r-project.org/web/packages/MVar/index.html.
Platt, J. (1998). Fast training of support vector Machines using sequential minimal optimization. In B. Schoelkopf, and C. Burges, & A. Smola (Eds.), Advances in kernel methods: support vector learning. Cambridge, MA: MIT Press.
Quinlan, R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann Publishers.
R Development Core Team. (2020). R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria: Vienna University of Economics and Business.
Silva, L. F.L., Souza, D. C., Resende, L. V., Nassur, R. C. M.R., Samartini, C. Q., & Gonçalves, W. M. (2018). Nutritional evaluation of nonconventional vegetables in Brazil. Anais da Academia Brasileira de Ciências, 90, 1775-1787.
Souza, D. C., Silva, L. F. L., Resende, L. V., Costa, P.A., Guerra, T. S., & Gonçalves, W. M. (2018). Influence of irrigation, planting density and vegetative propagation on yield of rhizomes of starch the arrowroot. Revista de Ciencias Agrícolas, 41(3), 683-691.
Sumner, M., Frank, & Hall, E. M. (2005). Speeding up logistic model tree induction. In A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho & J. Gama (Eds.), Knowledge discovery in databases: PKDD 2005. Lecture notes in computer science (vol. 3721, pp. 675-683). Berlin, Germany: Springer.
TBCA, Tabela Brasileira de Composição de Alimentos (2020). Universidade de São Paulo (USP), São Paulo. Food Research Center (FoRC), Versão 7.1. Accessed: September 15, 2020, http://www.fcf.usp.br/tbca.
Tippannavar, S., & Soma, S. (2017). A machine learning system for recognition of vegetable plant and classification of abnormality using leaf texture analysis. International Journal of Scientific & Engineering Research, 8(6), 1558-1563.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.
Xiao, D. Q., Feng J, Z., Lin, T. Y., Pang, C. H., & Ye, Y. W. (2018). Classification and recognition scheme for vegetable pests based on the BOF-SVM model. International Journal of Agricultural and Biological Engineering, 11(3), 190-196. https://doi.org/10.25165/j.ijabe.20181103.3477.
Zhu, L., Li, Z. B., Li, C., Wu, J., & Yue, J. (2018). High performance vegetable classification from images based on AlexNet deep learning model. International Journal of Agricultural and Biological Engineering, 2018, 11(4), 217-223. https://doi.org/10.25165/j.ijabe.20181104.2690.
فهرسة مساهمة: Keywords: classification models; macro and micro nutrients; supervised classification; traditional vegetables
تواريخ الأحداث: Date Created: 20201111 Date Completed: 20210226 Latest Revision: 20210226
رمز التحديث: 20231215
DOI: 10.1111/1750-3841.15514
PMID: 33174205
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-3841
DOI:10.1111/1750-3841.15514