دورية أكاديمية

Harnessing tactile waves to measure skin-to-skin interactions.

التفاصيل البيبلوغرافية
العنوان: Harnessing tactile waves to measure skin-to-skin interactions.
المؤلفون: Kirsch LP; Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, 4 place Jussieu, 75005, Paris, France. kirsch@isir.upmc.fr., Job XE; Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, 4 place Jussieu, 75005, Paris, France., Auvray M; Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, 4 place Jussieu, 75005, Paris, France., Hayward V; Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, 4 place Jussieu, 75005, Paris, France.
المصدر: Behavior research methods [Behav Res Methods] 2021 Aug; Vol. 53 (4), pp. 1469-1477. Date of Electronic Publication: 2020 Nov 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101244316 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1554-3528 (Electronic) Linking ISSN: 1554351X NLM ISO Abbreviation: Behav Res Methods Subsets: MEDLINE
أسماء مطبوعة: Publication: 2010- : New York : Springer
Original Publication: Austin, Tex. : Psychonomic Society, c2005-
مواضيع طبية MeSH: Touch* , Touch Perception*, Fingers ; Humans
مستخلص: Skin-to-skin touch is an essential form of tactile interaction, yet there is no known method to quantify how we touch our own skin or someone else's skin. Skin-to-skin touch is particularly challenging to measure objectively, since interposing an instrumented sheet, no matter how thin and flexible, between the interacting skins is not an option. To fill this gap, we explored a technique that takes advantage of the propagation of vibrations from the locus of touch to pick up a signal that contains information about skin-to-skin tactile interactions. These "tactile waves" were measured by an accelerometer sensor placed on the touching finger. Applied pressure and speed had a direct influence on measured signal power when the target of touch was the self or another person. The measurements were insensitive to changes in the location of the sensor relative to the target. Our study suggests that this method has potential for probing behaviour during skin-to-skin tactile interactions and could be a valuable technique to study social touch, self-touch, and motor control. The method is non-invasive, easy to commission, inexpensive, and robust.
(© 2020. The Psychonomic Society, Inc.)
References: Ackerley, R., Olausson, H., Wessberg, J., & McGlone, F. (2012). Wetness perception across body sites. Neuroscience Letters, 522(1), 73–77. (PMID: 2271000610.1016/j.neulet.2012.06.020)
Adams, M. J., Johnson, S. A., Lefèvre, P., Lévesque, V., Hayward, V., André, T., & Thonnard, J.-L. (2013). Finger pad friction and its role in grip and touch. Journal of the Royal Society Interface, 10(80), 20120467. (PMID: 356572410.1098/rsif.2012.04673565724)
Akay, A. (2002). Acoustics of friction. The Journal of the Acoustical Society of America, 111(4), 1525–1548. (PMID: 1200283710.1121/1.1456514)
Andrews, J. W., Adams, M. J., & Montenegro-Johnson, T. D. (2020). A universal scaling law of Mammalian touch. Science Advances, In press.
Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229–240. (PMID: 10.1037/1089-2680.10.3.229)
Baumberger, T., & Caroli, C. (2006). Solid friction from stick–slip down to pinning and aging. Advances in Physics, 55(3–4), 279–348.
Bays, P. M., & Wolpert, D. M. (2008). Predictive attenuation in the perception of touch. In P. Haggard, Y. Rosetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition (Vol. 22, pp. 339–358). Oxford University Press.
Bensmaia, S. J., & Hollins, M. (2003). The vibrations of texture. Somatosensory & Motor Research, 20(1), 33–43. (PMID: 10.1080/0899022031000083825)
Blakemore, S.-J., Wolpert, D. M., & Frith, C. D. (2000). Why can’t you tickle yourself? Neuroreport, 11(11), R11–R16. (PMID: 1094368210.1097/00001756-200008030-00002)
Boiten, F. A., Frijda, N. H., & Wientjes, C. J. E. (1994). Emotions and respiratory patterns: review and critical analysis. International Journal of Psychophysiology, 17(2), 103–128. (PMID: 799577410.1016/0167-8760(94)90027-2)
Cascio, C. J., Moore, D., & McGlone, F. (2019). Social touch and human development. Developmental Cognitive Neuroscience, 35, 5–11. (PMID: 2973141710.1016/j.dcn.2018.04.009)
Comon, P., & Jutten, C. (2010). Handbook of blind source separation: independent component analysis and applications. Academic Press.
Crucianelli, L., Metcalf, N. K., Fotopoulou, A. K., & Jenkinson, P. M. (2013). Bodily pleasure matters: velocity of touch modulates body ownership during the rubber hand illusion. Frontiers in Psychology, 4, 703. (PMID: 24115938379269910.3389/fpsyg.2013.00703)
Delhaye, B., Hayward, V., Lefèvre, P., & Thonnard, J.-L. (2012). Texture-induced vibrations in the forearm during tactile exploration. Frontiers in Behavioral Neuroscience, 6(37), 1–10.
Einhäuser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National Academy of Sciences, 105(5), 1704–1709. (PMID: 10.1073/pnas.0707727105)
Feldman, A. G. (1980). Superposition of motor programs—i. rhythmic forearm movements in man. Neuroscience, 5(1), 81–90. (PMID: 736684510.1016/0306-4522(80)90073-1)
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104, 65–74. (PMID: 2545138110.1016/j.biopsycho.2014.11.004)
Goldenberg, M. S., Yack, H. J., Cerny, F. J., & Burton, H. W. (1991). Acoustic myography as an indicator of force during sustained contractions of a small hand muscle. Journal of Applied Physiology, 70(1), 87–91. (PMID: 201041410.1152/jappl.1991.70.1.87)
Gu, Y., Yu, C., Li, Z., Li, W., Xu, S., Wei, X., & Shi, Y. (2019). Accurate and low-latency sensing of touch contact on any surface with finger-worn IMU sensor (pp. 1059–1070). Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology.
Gueorguiev, D., Bochereau, S., Mouraux, A., Hayward, V., & Thonnard, J. L. (2016). Touch uses frictional cues to discriminate flat materials. Scientific Reports, 6, 25553. (PMID: 27149921485876310.1038/srep25553)
Guigon, E., Chafik, O., Jarrasse, N., & Roby-Brami, A. (2019). Experimental and theoretical study of velocity fluctuations during slow movements in humans. Journal of Neurophysiology, 121(2), 715–727. (PMID: 3064998110.1152/jn.00576.2018)
Hipp, J., Arabzadeh, E., Zorzin, E., Conradt, J., Kayser, C., Diamond, M. E., & Konig, P. (2006). Texture signals in whisker vibrations. Journal of Neurophysiology, 95(3), 1792–1799. (PMID: 1633899210.1152/jn.01104.2005)
Hodges, P. W. (2019). Consensus for experimental design in electromyography (CEDE) project. Journal of Electromyography and Kinesiology In press.
Husserl, E. (1989). The constitution of psychic reality through the body (pp. 151–169). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy, Springer.
Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550–564. (PMID: 649998110.1007/BF00237997)
Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: sound-biased touch. Current Biology, 8(6), 190–191. (PMID: 10.1016/S0960-9822(98)70120-4)
Kilteni, K., & Ehrsson, H. H. (2017). Body ownership determines the attenuation of self-generated tactile sensations. Proceedings of the National Academy of Sciences, 114(31), 8426–8431. (PMID: 10.1073/pnas.1703347114)
Kirkpatrick, S., Duncan, D. D., & Fang, L. (2004). Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin. Journal of Biomedical Optics, 9(6), 1311–1320. (PMID: 1556895310.1117/1.1803843)
Klöcker, A., Wiertlewski, M., Théate, V., Hayward, V., & Thonnard, J.-L. (2013). Physical factors influencing pleasant touch during tactile exploration. PloS One, 8(11), e79085. (PMID: 24244425382833910.1371/journal.pone.0079085)
Laput G., Xiao R. & Harrison, C. (2016) Viband: High-fidelity bio-acoustic sensing using commodity smartwatch accelerometers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 321–333.
Latash, M. L., Scholz, J. P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276–308. (PMID: 1771546010.1123/mcj.11.3.276)
Manfredi, L. R., Baker, A. T., Elias, D. O., Dammann III, J. F., Zielinski, M. C., Polashock, V. S., & Bensmaia, S. J. (2012). The effect of surface wave propagation on neural responses to vibration in primate glabrous skin. PLoS One, 7(2), e31203. (PMID: 22348055327842010.1371/journal.pone.0031203)
Mannini, A., Intille, S. S., Rosenberger, M., Sabatini, A. M., & Haskell, W. (2013). Activity recognition using a single accelerometer placed at the wrist or ankle. Medicine and Science in Sports and Exercise, 45(11), 2193. (PMID: 23604069379593110.1249/MSS.0b013e31829736d6)
McGlone, F., Wessberg, J., & Olausson, H. (2014). Discriminative and affective touch: sensing and feeling. Neuron, 82(4), 737–755. (PMID: 2485393510.1016/j.neuron.2014.05.001)
Merleau-Ponty, M. (1962). Phenomenology of perception. Routledge.
Morris, J. R. W. (1973). Accelerometry—a technique for the measurement of human body movements. Journal of Biomechanics, 6(6), 729–736. (PMID: 475749010.1016/0021-9290(73)90029-8)
Morrison, I., Löken, L. S., & Olausson, H. (2010). The skin as a social organ. Experimental Brain Research, 204(3), 305–314. (PMID: 1977142010.1007/s00221-009-2007-y)
Ritt, J. T., Andermann, M. L., & Moore, C. I. (2008). Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron, 57(4), 599–613. (PMID: 18304488439197410.1016/j.neuron.2007.12.024)
Schütz-Bosbach, S., Musil, J. J., & Haggard, P. (2009). Touchant-touché: The role of self-touch in the representation of body structure. Consciousness and Cognition, 18(1), 2–11. (PMID: 1881505610.1016/j.concog.2008.08.003)
Schwarz, C. (2016). The slip hypothesis: tactile perception and its neuronal bases. Trends in Neurosciences, 39(7), 449–462. (PMID: 2731192710.1016/j.tins.2016.04.008)
Shao, Y., Hayward, V., & Visell, Y. (2016). Spatial patterns of cutaneous vibration during whole-hand haptic interactions. Proceedings of the National Academy of Sciences, 113(15), 4188–4193. (PMID: 10.1073/pnas.1520866113)
Shao, Y., Hayward, V., & Visell, Y. (2020). Compression of dynamic tactile information in the human hand. Science Advances, 6, eaaz1158. (PMID: 32494610715991610.1126/sciadv.aaz1158)
Shergill, S. S., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2003). Two eyes for an eye: the neuroscience of force escalation. Science, 301(5630), 187–187. (PMID: 1285580010.1126/science.1085327)
Shi, Y., Zhang, H., Zhao, K., Cao, J., Sun, M., & Nanayakkara, S. (2020). Ready, steady, touch! sensing physical contact with a finger-mounted IMU. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 1–25. (PMID: 10.1145/3397309)
Tanaka, Y., Horita, Y., Sano, A., & Fujimoto, H. (2011). Tactile sensing utilizing human tactile perception. In IEEE World Haptics Conference (pp. 621–626). IEEE.
Tanaka, Y., Horita, Y., & Sano, A. (2012). Finger-mounted skin vibration sensor for active touch. In P. Isokoski & J. Springare (Eds.), Haptics: perception, devices, mobility, and communication (pp. 169–174). Berlin, Heidelberg: Springer.
Tronstad, C., Johnsen, G. K., Grimnes, S., & Martinsen, Ø. G. (2010). A study on electrode gels for skin conductance measurements. Physiological Measurement, 31(10), 1395–1410. (PMID: 2081108610.1088/0967-3334/31/10/008)
Valderas, M. T., Bolea, J., Laguna, P., Vallverdù, M., & Bailón, R. (2015). Human emotion recognition using heart rate variability analysis with spectral bands based on respiration. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6134–6137). IEEE.
van Dooren, M., de Vries, J. J. G., & Janssen, J. H. (2012). Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & Behavior, 106(2), 298–304. (PMID: 10.1016/j.physbeh.2012.01.020)
van Stralen, H. E., van Zandvoort, M. J. E., Hoppenbrouwers, S. S., Vissers, L. M. G., Kappelle, L. J., & Dijkerman, H. C. (2014). Affective touch modulates the rubber hand illusion. Cognition, 131(1), 147–158. (PMID: 2448710610.1016/j.cognition.2013.11.020)
Verrillo, R. T., Bolanowski, S. J., & McGlone, F. P. (2003). Intra-and interactive touch on the face. Somatosensory & Motor Research, 20(1), 3–11. (PMID: 10.1080/0899022031000083780)
Vexler, A., Polyansky, I., & Gorodetsky, R. (1999). Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer. Journal of Investigative Dermatology, 113(5), 732–739. (PMID: 10.1046/j.1523-1747.1999.00751.x)
Waris, A., Niazi, I. K., Jamil, M., Englehart, K., Jensen, W., & Kamavuako, E. N. (2018). Multiday evaluation of techniques for EMG-based classification of hand motions. IEEE Journal of Biomedical and Health Informatics, 23(4), 1526–1534. (PMID: 3010670110.1109/JBHI.2018.2864335)
Wierda, S. M., van Rijn, H., Taatgen, N. A., & Martens, S. (2012). Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proceedings of the National Academy of Sciences, 109(22), 8456–8460. (PMID: 10.1073/pnas.1201858109)
Wiertlewski, M., Hudin, C., & Hayward, V. (2011). On the 1/f noise and non-integer harmonic decay of the interaction of a finger sliding on flat and sinusoidal surfaces. in Proceedings of World Haptics Conference, pp. 25–30.
Wiertlewski, M., Lozada, J., Pissaloux, E., & Hayward, V. (2010). Causality inversion in the reproduction of roughness. In A. M. L. Kappers, J. B. F. van Erp, W. M. Bergmann-Tiest, & F. C. T. van der Helm (Eds.), Haptics: generating and perceiving tangible sensations (pp. 17–24). Berlin, Heidelberg: Springer.
فهرسة مساهمة: Keywords: Self-touch; Skin-to-skin touch; Social touch; Tactile interaction
تواريخ الأحداث: Date Created: 20201118 Date Completed: 20210906 Latest Revision: 20210906
رمز التحديث: 20240628
DOI: 10.3758/s13428-020-01492-3
PMID: 33205350
قاعدة البيانات: MEDLINE
الوصف
تدمد:1554-3528
DOI:10.3758/s13428-020-01492-3