دورية أكاديمية

Folic acid prevents habituation memory impairment and oxidative stress in an aging model induced by D-galactose.

التفاصيل البيبلوغرافية
العنوان: Folic acid prevents habituation memory impairment and oxidative stress in an aging model induced by D-galactose.
المؤلفون: Garcez ML; Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil., Cassoma RCS; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., Mina F; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., Bellettini-Santos T; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., da Luz AP; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., Schiavo GL; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., Medeiros EB; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., Campos ACBF; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., da Silva S; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., Rempel LCT; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil., Steckert AV; Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil., Barichello T; Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA., Budni J; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil. josiane.budni@unesc.net.
المصدر: Metabolic brain disease [Metab Brain Dis] 2021 Feb; Vol. 36 (2), pp. 213-224. Date of Electronic Publication: 2020 Nov 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 8610370 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7365 (Electronic) Linking ISSN: 08857490 NLM ISO Abbreviation: Metab Brain Dis Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Amsterdam : Springer
Original Publication: New York : Plenum, c1986-
مواضيع طبية MeSH: Aging/*metabolism , Folic Acid/*pharmacology , Habituation, Psychophysiologic/*drug effects , Memory Disorders/*prevention & control , Oxidative Stress/*drug effects, Animals ; Galactose ; Hippocampus/drug effects ; Hippocampus/metabolism ; Male ; Memory/drug effects ; Memory Disorders/chemically induced ; Memory Disorders/metabolism ; Prefrontal Cortex/drug effects ; Prefrontal Cortex/metabolism ; Rats ; Rats, Wistar
مستخلص: The present study aimed to evaluate the effect of folic acid treatment in an animal model of aging induced by D-galactose (D-gal). For this propose, adult male Wistar rats received D-gal intraperitoneally (100 mg/kg) and/or folic acid orally (5 mg/kg, 10 mg/kg or 50 mg/kg) for 8 weeks. D-gal caused habituation memory impairment, and folic acid (10 mg/kg and 50 mg/kg) reversed this effect. However, folic acid 50 mg/kg per se caused habituation memory impairment. D-gal increased the lipid peroxidation and oxidative damage to proteins in the prefrontal cortex and hippocampus from rats. Folic acid (5 mg/kg, 10 mg/kg, or 50 mg/kg) partially reversed the oxidative damage to lipids in the hippocampus, but not in the prefrontal cortex, and reversed protein oxidative damage in the prefrontal cortex and hippocampus. D-gal induced synaptophysin and BCL-2 decrease in the hippocampus and phosphorylated tau increase in the prefrontal cortex. Folic acid was able to reverse these D-gal-related alterations in the protein content. The present study shows folic acid supplementation as an alternative during the aging to prevent cognitive impairment and brain alterations that can cause neurodegenerative diseases. However, additional studies are necessary to elucidate the effect of folic acid in aging.
References: Agnew-Blais JC, Wassertheil-Smoller S, Kang JH, Hogan PE, Coker LH et al (2015) Folate, vitamin B6 and vitamin B12 intake and mild cognitive impairment and probable dementia in the women’s health initiative memory study. J Acad Nutr Diet 115:231–241. https://doi.org/10.1016/j.jand.2014.07.006. (PMID: 10.1016/j.jand.2014.07.00625201007)
Amin J, Paquet C, Baker A, Asuni AA, Love S et al (2015) Effect of amyloid-beta (Abeta) immunization on hyperphosphorylated tau: a potential role for glycogen synthase kinase (GSK)-3beta. Neuropathol Appl Neurobiol 41:445–457. https://doi.org/10.1111/nan.12205. (PMID: 10.1111/nan.1220525486988)
Anderson CAM, Jee SH, Charleston J, Narrett M, Appel LJ (2010) Effects of folic acid supplementation on serum folate and plasma homocysteine concentrations in older adults: a dose-response trial. Am J Epidemiol 172:932–941. https://doi.org/10.1093/aje/kwq197. (PMID: 10.1093/aje/kwq197208471052984248)
Apostolova LG, Green AE, Babakchanian S, Hwang KS, Chou YY et al (2012) Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease. Alzheimer Dis Assoc Disord 26:17–27. https://doi.org/10.1097/WAD.0b013e3182163b62. (PMID: 10.1097/WAD.0b013e3182163b62223433743286134)
Araújo JR, Martel F, Borges N, Araújo JM, Keating E (2015) Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Res Rev 22:9–19. https://doi.org/10.1016/j.arr.2015.04.005. (PMID: 10.1016/j.arr.2015.04.00525939915)
Avramut M, Achim CL (2003) Immunophilins in nervous system degeneration and regeneration. Curr Top Med Chem 3:1376–1382. https://doi.org/10.2174/1568026033451871. (PMID: 10.2174/156802603345187112871169)
Bartsch T, Schönfeld R, Müller FJ, Alfke K, Leplow B et al (2010) Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science 328:1412–1415. https://doi.org/10.1126/science.1188160. (PMID: 10.1126/science.118816020538952)
Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535. https://doi.org/10.1038/nature08983. (PMID: 10.1038/nature08983203361352927852)
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. https://doi.org/10.1007/s00401-006-0127-z. (PMID: 10.1007/s00401-006-0127-z169064263906709)
Budni J, Zomkowski AD, Engel D, Santos DB, dos Santos AA et al (2013) Folic acid prevents depressive-like behavior and hippocampal antioxidant imbalance induced by restraint stress in mice. Exp Neurol 240:112–121. https://doi.org/10.1016/j.expneurol.2012.10.024. (PMID: 10.1016/j.expneurol.2012.10.02423142187)
Budni J, Pacheco R, da Silva S, Garcez ML, Mina F et al (2015) Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats. Behav Brain Res 302:35–43. https://doi.org/10.1016/j.bbr.2015.12.041. (PMID: 10.1016/j.bbr.2015.12.04126748256)
Burke SN, Foster TC (2019) Chapter 2 - animal models of cognitive aging and circuit-specific vulnerability. In: Dekosky ST, Asthana S (eds) Handbook of clinical neurology, vol 167. Elsevier, pp 19-36. https://doi.org/10.1016/B978-0-12-804766-8.00002-9.
Cacciapuoti F (2013) Lowering homocysteine levels with folic acid and B-vitamins do not reduce early atherosclerosis, but could interfere with cognitive decline and Alzheimer’s disease. J Thromb Thrombolysis 36:258–262. https://doi.org/10.1007/s11239-012-0856-x. (PMID: 10.1007/s11239-012-0856-x23224755)
Collaboration HLT (1998) Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. BMJ 316:894–898. (PMID: 10.1136/bmj.316.7135.894)
Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, de Lise F, di Donato A, Filippelli A (2016) Antioxidant supplementation in the treatment of aging-associated diseases. Front Pharmacol 7:24. https://doi.org/10.3389/fphar.2016.00024. (PMID: 10.3389/fphar.2016.00024269038694751263)
Cui X, Zuo P, Zhang Q, Li X, Hu Y et al (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 84:647–654. https://doi.org/10.1002/jnr.20899. (PMID: 10.1002/jnr.2089916710848)
Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431. (PMID: 10.1016/0076-6879(90)86135-I)
Eussen SJ, de Groot LC, Joosten LW, Bloo RJ, Clarke R et al (2006) Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. Am J Clin Nutr 84:361–370. (PMID: 10.1093/ajcn/84.2.361)
Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260. https://doi.org/10.1177/1073858405285923. (PMID: 10.1177/107385840528592316684969)
Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ et al (2009) One-year brain atrophy evident in healthy aging. J Neurosci 29:15223–15231. https://doi.org/10.1523/jneurosci.3252-09.2009. (PMID: 10.1523/jneurosci.3252-09.2009199553752827793)
Gao J, Zhou R, You X, Luo F, He H et al (2016) Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer's disease via SIRT1/NF-kappaB pathway. Metab Brain Dis 31:771–778. https://doi.org/10.1007/s11011-016-9813-2. (PMID: 10.1007/s11011-016-9813-226909502)
Garcez ML, de Carvalho CA, Mina F, Bellettini-Santos T, Schiavo GL et al (2018) Sodium butyrate improves memory and modulates the activity of histone deacetylases in aged rats after the administration of d-galactose. Exp Gerontol 113:209–217. https://doi.org/10.1016/j.exger.2018.10.005. (PMID: 10.1016/j.exger.2018.10.00530304709)
Girotto F, Scott L, Avchalumov Y, Harris J, Iannattone S, Drummond-Main C, Tobias R, Bello-Espinosa L, Rho JM, Davidsen J, Teskey GC, Colicos MA (2013) High dose folic acid supplementation of rats alters synaptic transmission and seizure susceptibility in offspring. Sci Rep 3:1465. https://doi.org/10.1038/srep01465. (PMID: 10.1038/srep01465234929513598003)
Gordon SL, Harper CB, Smillie KJ, Cousin MA (2016) A fine balance of synaptophysin levels underlies efficient retrieval of synaptobrevin II to synaptic vesicles. PLoS ONE 11:e0149457. https://doi.org/10.1371/journal.pone.0149457. (PMID: 10.1371/journal.pone.0149457268717014752265)
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300. (PMID: 10.1093/geronj/11.3.298)
Head E, Corrada MM, Kahle-Wrobleski K, Kim RC, Sarsoza F et al (2009) Synaptic proteins, neuropathology and cognitive status in the oldest-old. Neurobiol Aging 30:1125–1134. https://doi.org/10.1016/j.neurobiolaging.2007.10.001. (PMID: 10.1016/j.neurobiolaging.2007.10.00118006193)
Hermann PM, Watson SN, Wildering WC (2014) Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet 5:419. https://doi.org/10.3389/fgene.2014.00419. (PMID: 10.3389/fgene.2014.00419255387304255604)
Ho PI, Collins SC, Dhitavat S, Ortiz D, Ashline D et al (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J Neurochem 78:249–253. (PMID: 10.1046/j.1471-4159.2001.00384.x)
Hsieh HM, Wu WM, Hu ML (2009) Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 47:625–632. https://doi.org/10.1016/j.fct.2008.12.026. (PMID: 10.1016/j.fct.2008.12.02619146912)
Hua X, Lei M, Zhang Y, Ding J, Han Q et al (2007) Long-term D-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer’s disease. Life Sci 80:1897–1905. https://doi.org/10.1016/j.lfs.2007.02.030. (PMID: 10.1016/j.lfs.2007.02.03017391708)
Hughes CF, Ward M, Hoey L, McNulty H (2013) Vitamin B12 and ageing: current issues and interaction with folate. Ann Clin Biochem 50:315–329. https://doi.org/10.1177/0004563212473279. (PMID: 10.1177/000456321247327923592803)
Iqbal K, Liu F, Gong C-X, Alonso AC, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69. https://doi.org/10.1007/s00401-009-0486-3. (PMID: 10.1007/s00401-009-0486-3191840682872491)
Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J et al (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79:110–119. https://doi.org/10.1002/ana.24546. (PMID: 10.1002/ana.2454626505746)
Kok DEG, Dhonukshe-Rutten RAM, Lute C, Heil SG, Uitterlinden AG et al (2015) The effects of long-term daily folic acid and vitamin B(12) supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics 7:121. https://doi.org/10.1186/s13148-015-0154-5. (PMID: 10.1186/s13148-015-0154-5265687744644301)
Krause D, Roupas P (2015) Effect of vitamin intake on cognitive decline in older adults: evaluation of the evidence. J Nutr Health Aging 19:745–753. https://doi.org/10.1007/s12603-015-0539-3. (PMID: 10.1007/s12603-015-0539-326193858)
Kumar A, Dogra S, Prakash A (2009) Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-galactose induced senescence in mice. Naunyn-Schmiedeberg’s Arch Pharmacol 380:431–441. https://doi.org/10.1007/s00210-009-0442-8. (PMID: 10.1007/s00210-009-0442-8)
Lauretti E, Dincer O, Praticò D (1867) Glycogen synthase kinase-3 signaling in Alzheimer’s disease Biochimica et biophysica acta. Mol Cell Res 2020:118664. https://doi.org/10.1016/j.bbamcr.2020.118664. (PMID: 10.1016/j.bbamcr.2020.118664)
Lei M, Hua X, Xiao M, Ding J, Han Q et al (2008a) Impairments of astrocytes are involved in the d-galactose-induced brain aging. Biochem Biophys Res Commun 369:1082–1087. https://doi.org/10.1016/j.bbrc.2008.02.151. (PMID: 10.1016/j.bbrc.2008.02.15118329384)
Lei M, Su Y, Hua X, Ding J, Han Q et al (2008b) Chronic systemic injection of D-galactose impairs the septohippocampal cholinergic system in rats. Neuroreport 19:1611–1615. https://doi.org/10.1097/WNR.0b013e3283136a1f. (PMID: 10.1097/WNR.0b013e3283136a1f18845941)
Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357. (PMID: 10.1016/S0076-6879(94)33040-9)
Lewerin C, Matousek M, Steen G, Johansson B, Steen B et al (2005) Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr 81:1155–1162. (PMID: 10.1093/ajcn/81.5.1155)
Li W, Jiang M, Xiao Y, Zhang X, Cui S et al (2015a) Folic acid inhibits tau phosphorylation through regulation of PP2A methylation in SH-SY5Y cells. J Nutr Health Aging 19:123–129. https://doi.org/10.1007/s12603-014-0514-4. (PMID: 10.1007/s12603-014-0514-425651436)
Li W, Jiang M, Zhao S, Liu H, Zhang X et al (2015b) Folic acid inhibits amyloid beta-peptide production through modulating DNA Methyltransferase activity in N2a-APP cells. Int J Mol Sci 16:25002–25013. https://doi.org/10.3390/ijms161025002. (PMID: 10.3390/ijms161025002264922444632786)
Liang Z, Liu F, Iqbal K, Grundke-Iqbal I, Gong C-X (2009) Dysregulation of tau phosphorylation in mouse brain during excitotoxic damage. JAD 17:531–539. https://doi.org/10.3233/JAD-2009-1069. (PMID: 10.3233/JAD-2009-106919363259)
Loscalzo J (2002) Homocysteine and Dementias. N Engl J Med 346:466–468. https://doi.org/10.1056/NEJM200202143460702. (PMID: 10.1056/NEJM20020214346070211844846)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. (PMID: 10.1016/S0021-9258(19)52451-6)
Lubitz I, Ricny J, Atrakchi-Baranes D, Shemesh C, Kravitz E et al (2016) High dietary advanced glycation end products are associated with poorer spatial learning and accelerated Abeta deposition in an Alzheimer mouse model. Aging Cell. https://doi.org/10.1111/acel.12436.
Luevano-Contreras C, Chapman-Novakofski K (2010) Dietary advanced glycation end products and aging. Nutrients 2:1247–1265. https://doi.org/10.3390/nu2121247. (PMID: 10.3390/nu2121247222540073257625)
Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146. https://doi.org/10.1016/S0166-2236(03)00032-8. (PMID: 10.1016/S0166-2236(03)00032-812591216)
McNulty H, Pentieva K, Hoey L, Strain J, Ward M (2012) Nutrition throughout life: folate International journal for vitamin and nutrition research. Int J Vitam Nutr Res 82:348–354. https://doi.org/10.1024/0300-9831/a000130.
Moore EM, Ames D, Mander AG, Carne RP, Brodaty H et al (2014) Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: combined data from three cohorts. JAD 39:661–668. https://doi.org/10.3233/jad-131265. (PMID: 10.3233/jad-13126524246419)
Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH et al (2000) Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol 157:623–636. https://doi.org/10.1016/s0002-9440(10)64573-7. (PMID: 10.1016/s0002-9440(10)64573-7109341651850134)
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Trends in oxidative aging theories. Free Radic Biol Med 43:477–503. https://doi.org/10.1016/j.freeradbiomed.2007.03.034. (PMID: 10.1016/j.freeradbiomed.2007.03.03417640558)
Munch G, Westcott B, Menini T, Gugliucci A (2012) Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 42:1221–1236. https://doi.org/10.1007/s00726-010-0777-y. (PMID: 10.1007/s00726-010-0777-y20949363)
Neddens J, Temmel M, Flunkert S, Kerschbaumer B, Hoeller C, Loeffler T, Niederkofler V, Daum G, Attems J, Hutter-Paier B (2018) Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun 6:52. https://doi.org/10.1186/s40478-018-0557-6. (PMID: 10.1186/s40478-018-0557-6299585446027763)
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381. https://doi.org/10.1097/NEN.0b013e31825018f7. (PMID: 10.1097/NEN.0b013e31825018f7224878563560290)
Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore A, Gentile F, Barrera G (2013) Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 4:242. https://doi.org/10.3389/fphys.2013.00242. (PMID: 10.3389/fphys.2013.00242240275363761222)
Prisila Dulcy C, Singh HK, Preethi J, Rajan KE (2012) Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose. J Neurosci Res 90:2053–2064. https://doi.org/10.1002/jnr.23080. (PMID: 10.1002/jnr.2308022715050)
Rahimi VB, Askari VR, Mousavi SH (2018) Ellagic acid reveals promising anti-aging effects against d-galactose-induced aging on human neuroblastoma cell line, SH-SY5Y: a mechanistic study. Biomed Pharmacother 108:1712–1724. https://doi.org/10.1016/j.biopha.2018.10.024. (PMID: 10.1016/j.biopha.2018.10.02430372874)
Regan P, Whitcomb DJ, Cho K (2016) Physiological and pathophysiological implications of synaptic tau. Neuroscientist. https://doi.org/10.1177/1073858416633439.
Remigante A, Morabito R, Spinelli S, Trichilo V, Loddo S et al (2020) D-Galactose decreases anion exchange capability through band 3 protein in human erythrocytes. Antioxidants 9:689. (PMID: 10.3390/antiox9080689)
Rezk BM, Haenen GR, van der Vijgh WJ, Bast A (2003) Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett 555:601–605. (PMID: 10.1016/S0014-5793(03)01358-9)
Robinson JL, Molina-Porcel L, Corrada MM, Raible K, Lee EB et al (2014) Perforant path synaptic loss correlates with cognitive impairment and Alzheimer’s disease in the oldest-old. Brain J Neurol 137:2578–2587. https://doi.org/10.1093/brain/awu190. (PMID: 10.1093/brain/awu190)
Shen Y, Gao H, Shi X, Wang N, Ai D et al (2014) Glutamine synthetase plays a role in d-galactose-induced astrocyte aging in vitro and in vivo. Exp Gerontol 58:166–173. https://doi.org/10.1016/j.exger.2014.08.006. (PMID: 10.1016/j.exger.2014.08.00625128847)
Sinclair LI, Tayler HM, Love S (2015) Synaptic protein levels altered in vascular dementia. Neuropathol Appl Neurobiol 41:533–543. https://doi.org/10.1111/nan.12215. (PMID: 10.1111/nan.12215255597504471617)
Singh R, Kanwar SS, Sood PK, Nehru B (2011) Beneficial effects of folic acid on enhancement of memory and antioxidant status in aged rat brain. Cell Mol Neurobiol 31:83–91. https://doi.org/10.1007/s10571-010-9557-1. (PMID: 10.1007/s10571-010-9557-121170581)
Srivastav S, Singh SK, Yadav AK, Srikrishna S (2015) Folic acid supplementation ameliorates oxidative stress, metabolic functions and developmental anomalies in a novel fly model of Parkinson’s disease. Neurochem Res 40:1350–1359. https://doi.org/10.1007/s11064-015-1598-x. (PMID: 10.1007/s11064-015-1598-x25963948)
Ullah F, Ali T, Ullah N, Kim MO (2015) Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int 90:114–124. https://doi.org/10.1016/j.neuint.2015.07.001. (PMID: 10.1016/j.neuint.2015.07.00126209154)
Vianna MR, Alonso M, Viola H, Quevedo J, de Paris F et al (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn memory 7:333–340.
Wang X, Michaelis E (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2. https://doi.org/10.3389/fnagi.2010.00012.
Wang J-Z, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59–68. https://doi.org/10.1111/j.1460-9568.2006.05226.x. (PMID: 10.1111/j.1460-9568.2006.05226.x172412673191918)
Wang XX, Zhang B, Xia R, Jia QY (2020) Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci 24:9601–9614. https://doi.org/10.26355/eurrev_202009_23048. (PMID: 10.26355/eurrev_202009_2304833015803)
Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028. (PMID: 10.1016/S0092-8674(85)80082-9)
Wisse LEM, Biessels GJ, Heringa SM, Kuijf HJ, Koek DL et al (2014) Hippocampal subfield volumes at 7T in early Alzheimer’s disease and normal aging. Neurobiol Aging 35:2039–2045. https://doi.org/10.1016/j.neurobiolaging.2014.02.021. (PMID: 10.1016/j.neurobiolaging.2014.02.02124684788)
Xu J, Sinclair KD (2015) One-carbon metabolism and epigenetic regulation of embryo development. Reprod Fertil Dev. https://doi.org/10.1071/rd14377.
Yeung ST, Myczek K, Kang AP, Chabrier MA, Baglietto-Vargas D et al (2014) Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience 259:214–222. https://doi.org/10.1016/j.neuroscience.2013.11.054. (PMID: 10.1016/j.neuroscience.2013.11.05424316470)
Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. https://doi.org/10.1038/nrm2308. (PMID: 10.1038/nrm230818097445)
Yu HL, Li L, Zhang XH, Xiang L, Zhang J et al (2009) Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by beta-amyloid 31-35. Br J Nutr 102:655–662. https://doi.org/10.1017/s0007114509243042. (PMID: 10.1017/s000711450924304219331699)
Yu Y, Feng L, Li J, Lan X, L A et al (2017) The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits. Behav Brain Res 334:155–162. https://doi.org/10.1016/j.bbr.2017.07.003. (PMID: 10.1016/j.bbr.2017.07.00328688896)
Yuki D, Sugiura Y, Zaima N, Akatsu H, Takei S et al (2014) DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer’s disease. Sci Rep 4:7130. https://doi.org/10.1038/srep07130. (PMID: 10.1038/srep07130254107335382699)
Zhan PY, Peng CX, Zhang LH (2014) Berberine rescues D-galactose-induced synaptic/memory impairment by regulating the levels of Arc. Pharmacol Biochem Behav 117:47–51. https://doi.org/10.1016/j.pbb.2013.12.006. (PMID: 10.1016/j.pbb.2013.12.00624342459)
Zhao H, Liang J, Li X, Yu H, Li X et al (2010) Folic acid and soybean isoflavone combined supplementation protects the post-neural tube closure defects of rodents induced by cyclophosphamide in vivo and in vitro. NeuroToxicology 31:180–187. https://doi.org/10.1016/j.neuro.2009.12.011. (PMID: 10.1016/j.neuro.2009.12.01120060418)
معلومات مُعتمدة: RF1 AG072491 United States AG NIA NIH HHS
فهرسة مساهمة: Keywords: Aging; Cognitive impairment; D-galactose; Folic acid; Oxidative damage; Rats
المشرفين على المادة: 935E97BOY8 (Folic Acid)
X2RN3Q8DNE (Galactose)
تواريخ الأحداث: Date Created: 20201121 Date Completed: 20211005 Latest Revision: 20240308
رمز التحديث: 20240308
DOI: 10.1007/s11011-020-00647-7
PMID: 33219893
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7365
DOI:10.1007/s11011-020-00647-7