دورية أكاديمية

Reduced type-A carbohydrate-binding module interactions to cellulose I leads to improved endocellulase activity.

التفاصيل البيبلوغرافية
العنوان: Reduced type-A carbohydrate-binding module interactions to cellulose I leads to improved endocellulase activity.
المؤلفون: Nemmaru B, Ramirez N; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA., Farino CJ; Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA., Yarbrough JM; Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA., Kravchenko N; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA., Chundawat SPS; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
المصدر: Biotechnology and bioengineering [Biotechnol Bioeng] 2021 Mar; Vol. 118 (3), pp. 1141-1151. Date of Electronic Publication: 2020 Dec 16.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 7502021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0290 (Electronic) Linking ISSN: 00063592 NLM ISO Abbreviation: Biotechnol Bioeng Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Hoboken, NJ : Wiley
Original Publication: New York, Wiley.
مواضيع طبية MeSH: Cellulases/*chemistry , Cellulose/*chemistry, Hydrolysis ; Protein Binding
مستخلص: Dissociation of nonproductively bound cellulolytic enzymes from cellulose is hypothesized to be a key rate-limiting factor impeding cost-effective biomass conversion to fermentable sugars. However, the role of carbohydrate-binding modules (CBMs) in enabling nonproductive enzyme binding is not well understood. Here, we examine the subtle interplay of CBM binding and cellulose hydrolysis activity for three models type-A CBMs (Families 1, 3a, and 64) tethered to multifunctional endoglucanase (CelE) on two distinct cellulose allomorphs (i.e., cellulose I and III). We generated a small library of mutant CBMs with varying cellulose affinity, as determined by equilibrium binding assays, followed by monitoring cellulose hydrolysis activity of CelE-CBM fusion constructs. Finally, kinetic binding assays using quartz crystal microbalance with dissipation were employed to measure CBM adsorption and desorption rate constants k on and k off , respectively, towards nanocrystalline cellulose derived from both allomorphs. Overall, our results indicate that reduced CBM equilibrium binding affinity towards cellulose I alone, resulting from increased desorption rates ( k off ) and reduced effective adsorption rates ( nk on ), is correlated to overall improved endocellulase activity. Future studies could employ similar approaches to unravel the role of CBMs in nonproductive enzyme binding and develop improved cellulolytic enzymes for industrial applications.
(© 2020 Wiley Periodicals LLC.)
References: Arumugam Mahadevan, S., Gon, W.iS., Lee, D. S., & Bae, H. J. (2008). Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiology Letters, 287, 205-211.
Bandi, C. K., Goncalves, A., Pingali, S. V., & Chundawat, S. P. S. (2020). Carbohydrate binding domains facilitate efficient oligosaccharides synthesis by enhancing mutant catalytic domain transglycosylation activity. Biotechnology and Bioengineering, 117, 2944-2956.
Beckham, G. T., Matthews, J. F., Bomble, Y. J., Bu, L., Adney, W. S., Himmel, M. E., Nimlos, M. R., & Crowley, M. F. (2010). Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. Journal of Physical Chemistry B, 114, 1447-1453.
Beckham, G. T., Ståhlberg, J., Knott, B. C., Himmel, M. E., Crowley, M. F., Sandgren, M., Sørlie, M., & Payne, C. M. (2014). Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Current Opinion in Biotechnology, 27, 96-106.
Bianchetti, C. M., Brumm, P., Smith, R. W., Dyer, K., Hura, G. L., Rutkoski, T. J., & Phillips, G. N. (2013). Structure, dynamics, and specificity of endoglucanase D from Clostridium cellulovorans. Journal of Molecular Biology, 425, 4267-4285.
Boraston, A. B., Bolam, D. N., Gilbert, H. J., & Davies, G. J. (2004). Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochemical Journal, 382, 769-781.
Brady, S. K., Sreelatha, S., Feng, Y., Chundawat, S. P. S., & Lang, M. J. (2015). Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps. Nature Communications, 6, 10149.
Brunecky, R., Subramanian, V., Yarbrough, J. M., Donohoe, B. S., Vinzant, T. B., Vanderwall, T. A., Knott, B. C., Chaudhari, Y. B., Bomble, Y. J., Himmel, M. E., & Decker, S. R. (2020). Synthetic fungal multifunctional cellulases for enhanced biomass conversion. Green Chemistry, 22, 478-489.
Burstein, T., Shulman, M., Jindou, S., Petkun, S., Frolow, F., Shoham, Y., Bayer, E. A., & Lamed, R. (2009). Physical association of the catalytic and helper modules of a family-9 glycoside hydrolase is essential for activity. FEBS Letters, 583, 879-884.
Carrard, G., Koivula, A., Söderlund, H., & Béguin, P. (2000). Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proceedings of the National Academy of Sciences of the United States of America, 97, 10342-10347.
Cheng, G., Datta, S., Liu, Z., Wang, C., Murton, J. K., Brown, P. A., Jablin, M. S., Dubey, M., Majewski, J., Halbert, C. E., Browning, J. F., Esker, A. R., Watson, B. J., Zhang, H., Hutcheson, S. W., Huber, D. L., Sale, K. L., Simmons, B. A., & Kent, M. S. (2012). Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. Langmuir, 28, 8348-8358.
Chundawat, S. P. S., Nemmaru, B., Hackl, M., Brady, S. K., Hilton, M. A., Johnson, M. M., Chang, S., Lang, M. J., Huh, H., Lee, S.-H., Yarbrough, J. M., López, C. A., & Gnanakaran, S. (2020). Multiscale characterization of complex binding interactions of cellulolytic enzymes s limitations of classical approaches. bioRxiv. https://doi.org/10.1101/2020.05.08.084152.
da Costa Sousa, L., Jin, M., Chundawat, S. P. S., Bokade, V., Tang, X., Azarpira, A., Lu, F., Avci, U., Humpula, J., Uppugundla, N., Gunawan, C., Pattathil, S., Cheh, A. M., Kothari, N., Kumar, R., Ralph, J., Hahn, M. G., Wyman, C. E., Singh, S., … Balan, V. (2016). Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy & Environmental Science, 9, 1215-1223.
Cruys-Bagger, N., Elmerdahl, J., Praestgaard, E., Tatsumi, H., Spodsberg, N., Borch, K., & Westh, P. (2012). Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. Journal of Biological Chemistry, 287, 18451-18458.
Fox, J. M., Jess, P., Jambusaria, R. B., Moo, G. M., Liphardt, J., Clark, D. S., & Blanch, H. W. (2013). A single-molecule analysis reveals morphological targets for cellulase synergy. Nature Chemical Biology, 9, 356-361.
Fox, J. M., Levine, S. E., Clark, D. S., & Blanch, H. W. (2012). Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry, 51, 442-452.
Gao, D., Chundawat, S. P. S., Sethi, A., Balan, V., Gnanakaran, S., & Dale, B. E. (2013). Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 110, 10922-10927.
Gao, D., Chundawat, S. P. S., Uppugundla, N., Balan, V., & Dale, B. E. (2011). Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion and dilute-acid pretreated lignocellulosic biomass. Biotechnology & Bioengineering, 108, 1788-1800.
Georgelis, N., Yennawar, N. H., & Cosgrove, D. J. (2012). Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proceedings of the National Academy of Sciences of the United States of America, 109, 14830-14835.
Glasgow, E. M., Vander Meulen, K. A., Takasuka, T. E., Bianchetti, C. M., Bergeman, L. F., Deutsch, S., & Fox, B. G. (2019). Extent and origins of functional diversity in a subfamily of glycoside hydrolases. Journal of Molecular Biology, 431, 1217-1233.
Guan, X., Chaffey, P. K., Zeng, C., Greene, E. R., Chen, L., Drake, M. R., Chen, C., Groobman, A., Resch, M. G., Himmel, M. E., Beckham, G. T., & Tan, Z. (2015). Molecular-scale features that govern the effects of O-glycosylation on a carbohydrate-binding module. Chemical Science, 6, 7185-7189.
Guo, J., & Catchmark, J. M. (2013). Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules, 14, 1268-1277.
Haarmeyer, C. N., Smith, M. D., Chundawat, S. P. S., Sammond, D., & Whitehead, T. A. (2017). Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein. Biotechnology and Bioengineering, 114, 740-750.
Hepler, N. K., & Cosgrove, D. J. (2019). Directed in vitro evolution of bacterial expansin BsEXLX1 for higher cellulose binding and its consequences for plant cell wall-loosening activities. FEBS Letters, 593, 2545-2555.
Herve, C., Rogowski, A., Blake, A. W., Marcus, S. E., Gilbert, H. J., & Knox, J. P. (2010). Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proceedings of the National Academy of Sciences of the United States of America, 107, 15293-15298.
Hong, J., Ye, X., & Zhang, Y. H. P. (2007). Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir, 23, 12535-12540.
Höök, F., Kasemo, B., Nylander, T., Fant, C., Sott, K., & Elwing, H. (2001). Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Analytical Chemistry, 73, 5796-5804.
Hu, F., Zhang, Y., Wang, P., Wu, S., Jin, Y., & Song, J. (2018). Comparison of the interactions between fungal cellulases from different origins and cellulose nanocrystal substrates with different polymorphs. Cellulose, 25, 1185-1195.
Igarashi, K., Wada, M., & Samejima, M. (2007). Activation of crystalline cellulose to cellulose III results in efficient hydrolysis by cellobiohydrolase. FEBS Journal, 274, 1785-1792.
Jalak, J., Kurašin, M., Teugjas, H., & Väljamä, P. (2012). Endo-exo synergism in cellulose hydrolysis revisited. Journal of Biological Chemistry, 287, 28802-28815.
Jervis, E. J., Haynes, C. A., & Kilburn, D. G. (1997). Surface diffusion of cellulases and their isolated binding domains on cellulose. Journal of Biological Chemistry, 272, 24016-24023.
Jordan, J. L., & Fernandez, E. J. (2008). QCM-D sensitivity to protein adsorption reversibility. Biotechnology and Bioengineering, 101, 837-842.
Jung, H., Wilson, D. B., & Walker, L. P. (2003). Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose. Biotechnology and Bioengineering, 84, 151-159.
Kari, J., Molina, G. A., Schaller, K. S., Christensen, S. J., Schiano-di-Cola, C., Badino, S. F., Sørensen, T. H., Røjel, N., Keller, M. B., Kolaczkowski, B. M., Olsen, J. P., Krogh, K. B. R. M., Jensen, K., Cavaleiro, A. M., Peters, G. H. J., Spodsberg, N., Borch, K., & Westh, P. (2020). Physical constrains and functional plasticity of cellulases: Linear scaling relationships for a heterogeneous enzyme reaction. bioRxiv. https://doi.org/10.1101/2020.05.20.105569.
Kari, J., Olsen, J., Borch, K., Cruys-Bagger, N., Jensen, K., & Westh, P. (2014). Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. Journal of Biological Chemistry, 289, 32459-32468.
Kari, J., Olsen, J. P., Jensen, K., Badino, S. F., Krogh, K. B. R. M., Borch, K., & Westh, P. (2018). Sabatier principle for interfacial (heterogeneous) enzyme catalysis. ACS Catalysis, 8, 11966-11972.
Kim, T. W., Chokhawala, H. A., Nadler, D., Blanch, H. W., & Clark, D. S. (2010). Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source. Biotechnology and Bioengineering, 107, 601-611.
Kim, S. J., Kim, S. H., Shin, S. K., Hyeon, J. E., & Han, S. O. (2016). Mutation of a conserved tryptophan residue in the CBM3c of a GH9 endoglucanase inhibits activity. International Journal of Biological Macromolecules, 92, 159-166.
Knott, B. C., Haddad Momeni, M., Crowley, M. F., MacKenzie, L. F., Götz, A. W., Sandgren, M., Withers, S. G., Staìšhlberg, J., & Beckham, G. T. (2014). The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. Journal of the American Chemical Society, 136, 321-329.
Kont, R., Kari, J., Borch, K., Westh, P., & Vä, P. (2016). Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A. Journal of Biological Chemistry, 291, 26013-26023.
Kostylev, M., Moran-Mirabal, J. M., Walker, L. P., & Wilson, D. B. (2012). Determination of the molecular states of the processive endocellulase Thermobifida fusca Cel9A during crystalline cellulose depolymerization. Biotechnology and Bioengineering, 109, 295-299.
Kumagai, A., Iwamoto, S., Lee, S. H., & Endo, T. (2014). Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils. Cellulose, 21, 2433-2444.
Kurašin, M., & Väljamäe, P. (2011). Processivity of cellobiohydrolases is limited by the substrate. Journal of Biological Chemistry, 286, 169-177.
Lee, H.-S., Contarino, M., Umashankara, M., Schon, A., Freier, E., Smith, A. B., III, Chaiken, I. M., & Penn, L. S. (2008). Use of the quartz crystal microbalance to monitor ligand-induced conformational rearrangements in HIV-1 envelope protein gp120. Bone, 23, 1-7.
Lehtiö, J., Sugiyama, J., Gustavsson, M., Fransson, L., Linder, M., & Teeri, T. T. (2003). The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proceedings of the National Academy of Sciences of the United States of America, 100, 484-489.
Levine, S. E., Fox, J. M., Blanch, H. W., & Clark, D. S. (2010). A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 107, 37-51.
Lim, S., Chundawat, S. P. S., & Fox, B. G. (2014). Expression, purification and characterization of a functional carbohydrate-binding module from Streptomyces sp. SirexAA-E. Protein Expression and Purification, 98, 1-9.
Linder, M., & Teeri, T. T. (1996). The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proceedings of the National Academy of Sciences of the United States of America, 93, 12251-12255.
Liu, Y., Nemmaru, B., & Chundawat, S. P. S. (2020). Thermobifida fusca cellulases exhibit increased endo-exo synergistic activity, but lower exocellulase activity, on cellulose-III. ACS Sustainable Chemistry & Engineering, 8, 5028-5039.
Maurer, S. A., Bedbrook, C. N., & Radke, C. J. (2012). Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate. Langmuir, 28, 14598-14608.
Maurer, S. A., Brady, N. W., Fajardo, N. P., & Radke, C. J. (2013). Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry. Journal of Colloid and Interface Science, 394, 498-508.
McLean, B. W., Boraston, A. B., Brouwer, D., Sanaie, N., Fyfe, C. A., Warren, R. A. J., Kilburn, D. G., & Haynes, C. A. (2002). Carbohydrate-binding modules recognize fine substructures of cellulose. Journal of Biological Chemistry, 277, 50245-50254.
McLean, B. W., Bray, M. R., Boraston, A. B., Gilkes, N. R., Haynes, C. A., & Kilburn, D. G. (2000). Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: Specificity and identification of functionally important amino acid residues. Protein Engineering, 13, 801-809.
Mudinoor, A. R., Goodwin, P. M., Rao, R. U., Karuna, N., Hitomi, A., Nill, J., & Jeoh, T. (2020). Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose. Biotechnology for Biofuels, 13, 10.
Murphy, L., Cruys-Bagger, N., Damgaard, H. D., Baumann, M. J., Olsen, S. N., Borch, K., Lassen, S. F., Sweeney, M., Tatsumi, H., & Westh, P. (2012). Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose. Journal of Biological Chemistry, 287, 1252-1260.
Nagy, T., Simpson, P., Williamson, M. P., Hazlewood, G. P., Gilbert, H. J., & Orosz, L. (1998). All three surface tryptophans in type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Letters, 429, 312-316.
Nill, J., & Jeoh, T. (2020). The role of evolving interfacial substrate properties on heterogeneous cellulose hydrolysis kinetics. ACS Sustainable Chemistry & Engineering, 8, 6722-6733.
Novy, V., Aïssa, K., Nielsen, F., Straus, S. K., Ciesielski, P., Hunt, C. G., & Saddler, J. (2019). Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules. Proceedings of the National Academy of Sciences of the United States of America, 116, 22545-22551.
Orłowski, A., Artzi, L., Cazade, P. A., Gunnoo, M., Bayer, E. A., & Thompson, D. (2018). On the distinct binding modes of expansin and carbohydrate-binding module proteins on crystalline and nanofibrous cellulose: Implications for cellulose degradation by designer cellulosomes. Physical Chemistry Chemical Physics, 20, 8278-8293.
Orłowski, A., Róg, T., Paavilainen, S., Manna, M., Heiskanen, I., Backfolk, K., Timonen, J., & Vattulainen, I. (2015). How endoglucanase enzymes act on cellulose nanofibrils: role of amorphous regions revealed by atomistic simulations. Cellulose, 22, 2911-2925.
Pakarinen, A., Haven, M. Ø., Djajadi, D. T., Várnai, A., Puranen, T., & Viikari, L. (2014). Cellulases without CBMs in high consistency ethanol production process. Biotechnology for Biofuels, 7, 27.
Pan, R., Hu, Y., Long, L., Wang, J., & Ding, S. (2016). Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzyme and Microbial Technology, 91, 42-51.
Pettersson, G, Linder, M., Reinikainen, T., Drakenberg, T., Mattinen, M.-L., Annila, A., Kontteli, M., Lindeberg, G., & Ståhlberg, J. (1995). Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Science, 4, 1056-1064.
Pires, V. M. R., Pereira, P. M. M., Brás, J. L. A., Correia, M., Cardoso, V., Bule, P., Alves, V. D., Najmudin, S., Venditto, I., Ferreira, L. M. A., Romão, M. J., Carvalho, A. L., Fontes, C. M. G. A., & Prazeres, D. M. (2017). Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C. Journal of Biological Chemistry, 292, 4847-4860.
Reinikainen, T., Teleman, O., & Teeri, T. T. (1995). Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins, 22, 392-403.
Reyes-Ortiz, V., Heins, R. A., Cheng, G., Kim, E. Y., Vernon, B. C., Elandt, R. B., Adams, P. D., Sale, K. L., Hadi, M. Z., Simmons, B. A., Kent, M. S., & Tullman-Ercek, D. (2013). Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnology for Biofuels, 6, 93.
Sajjad, M., Khan, M. I. M., Zafar, R., Ahmad, S., Niazi, U. H. K., & Akhtar, M. W. (2012). Influence of positioning of carbohydrate binding module on the activity of endoglucanase CelA of Clostridium thermocellum. Journal of Biotechnology, 161, 206-212.
Sammond, D. W., Yarbrough, J. M., Mansfield, E., Bomble, Y. J., Hobdey, S. E., Decker, S. R., Taylor, L. E., Resch, M. G., Bozell, J. J., Himmel, M. E., Vinzant, T. B., & Crowley, M. F. (2014). Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity. Journal of Biological Chemistry, 289, 20960-20969.
Schiefner, A., Angelov, A., Liebl, W., & Skerra, A. (2016). Structural basis for cellulose binding by the type A carbohydrate-binding module 64 of Spirochaeta thermophila. Proteins, 84, 855-858.
Shang, B. Z., Chang, R., & Chu, J. W. (2013). Systems-level modeling with molecular resolution elucidates the rate-limiting mechanisms of cellulose decomposition by cellobiohydrolases. Journal of Biological Chemistry, 288, 29081-29089.
Shibafuji, Y., Nakamura, A., Uchihashi, T., Sugimoto, N., Fukuda, S., Watanabe, H., Samejima, M., Ando, T., Noji, H., Koivula, A., Igarashi, K., & Iino, R. (2014). Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. Journal of Biological Chemistry, 289, 14056-14065.
Talamantes, D., Biabini, N., Dang, H., Abdoun, K., & Berlemont, R. (2016). Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnology for Biofuels, 9, 1-11.
Tammelin, T., Abburi, R., Gestranius, M., Laine, C., Setala, H., & Osterberg, M. (2015). Correlation between cellulose thin film supramolecular structure and interactions with water. Soft Matter, 11, 4274-4282.
Taylor, C. B., Talib, M. F., McCabe, C., Bu, L., Adney, W. S., Himmel, M. E., Crowley, M. F., & Beckham, G. T. (2012). Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module. Journal of Biological Chemistry, 287, 3147-3155.
Turon, X., Rojas, O. J., & Deinhammer, R. S. (2008). Enzymatic kinetics of cellulose hydrolysis: A QCM-D study. Langmuir, 24, 3880-3887.
Varnai, A., Siika-aho, M., & Viikari, L. (2013). Carbohydrate-binding modules (CBMs) revisited: Reduced amount of water counterbalances the need for CBMs. Biotechnology for Biofuels, 6, 30.
Vermaas, J. V., Kont, R., Beckham, G. T., Crowley, M. F., Gudmundsson, M., Sandgren, M., Ståhlberg, J., Väljamäe, P., & Knott, B. C. (2019). The dissociation mechanism of processive cellulases. Proceedings of the National Academy of Sciences of the United States of America, 116, 23061-23067.
Walker, J. A., Takasuka, T. E., Deng, K., Bianchetti, C. M., Udell, H. S., Prom, B. M., Kim, H., Adams, P. D., Northen, T. R., & Fox, B. G. (2015). Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnology for Biofuels, 8, 220.
Yoda, K., Toyoda, A., Mukoyama, Y., Nakamura, Y., & Minato, H. (2005). Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A. Applied and Environmental Microbiology, 71, 5787-5793.
فهرسة مساهمة: Keywords: carbohydrate-binding module; cellulose III; endocellulases; nonproductive binding; protein adsorption; quartz crystal microbalance with dissipation
المشرفين على المادة: 9004-34-6 (Cellulose)
EC 3.2.1.- (Cellulases)
تواريخ الأحداث: Date Created: 20201127 Date Completed: 20220117 Latest Revision: 20220117
رمز التحديث: 20221213
DOI: 10.1002/bit.27637
PMID: 33245142
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0290
DOI:10.1002/bit.27637