دورية أكاديمية

How Structures of Complement Complexes Guide Therapeutic Design.

التفاصيل البيبلوغرافية
العنوان: How Structures of Complement Complexes Guide Therapeutic Design.
المؤلفون: Bickel JK; Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London, SW7 2AZ, UK.; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK., Voisin TB; Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London, SW7 2AZ, UK., Tate EW; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK., Bubeck D; Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London, SW7 2AZ, UK. d.bubeck@imperial.ac.uk.
المصدر: Sub-cellular biochemistry [Subcell Biochem] 2021; Vol. 96, pp. 273-295.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 0316571 Publication Model: Print Cited Medium: Print ISSN: 0306-0225 (Print) Linking ISSN: 03060225 NLM ISO Abbreviation: Subcell Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: <2006- > : New York : Springer
Original Publication: London, New York, Plenum Press.
مواضيع طبية MeSH: Drug Design*, Complement Membrane Attack Complex/*chemistry , Complement Membrane Attack Complex/*ultrastructure, Cryoelectron Microscopy ; Humans
مستخلص: The complement system is essential for immune defence against infection and modulation of proinflammatory responses. Activation of the terminal pathway of complement triggers formation of the membrane attack complex (MAC), a multi-protein pore that punctures membranes. Recent advances in structural biology, specifically cryo-electron microscopy (cryoEM), have provided atomic resolution snapshots along the pore formation pathway. These structures have revealed dramatic conformational rearrangements that enable assembly and membrane rupture. Here we review the structural basis for MAC formation and show how soluble proteins transition into a giant β-barrel pore. We also discuss regulatory complexes of the terminal pathway and their impact on structure-guided drug discovery of complement therapeutics.
References: Aleshin AE, Schraufstatter IU, Stec B et al (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of Membrane Attack Complex (MAC). J Biol Chem 287:10210–10222. https://doi.org/10.1074/jbc.M111.327809. (PMID: 10.1074/jbc.M111.327809222677373323040)
Bayly-Jones C, Bubeck D, Dunstone MA (2017) The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc B Biol Sci 372:20160221. https://doi.org/10.1098/rstb.2016.0221. (PMID: 10.1098/rstb.2016.0221)
Bexborn F, Andersson PO, Chen H et al (2008) The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)Bb). Mol Immunol 45:2370–2379. https://doi.org/10.1016/J.MOLIMM.2007.11.003. (PMID: 10.1016/J.MOLIMM.2007.11.00318096230)
Bjøge L, Vedeler CA, Ulvestad E, Matre R (1994) Expression and function of CD59 on colonic adenocarcinoma cells. Eur J Immunol 24:1597–1603. https://doi.org/10.1002/eji.1830240722. (PMID: 10.1002/eji.1830240722)
Bjørge L, Hakulinen J, Wahlström T et al (1997) Complement-regulatory proteins in ovarian malignancies. Int J Cancer 70:14–25. https://doi.org/10.1002/(SICI)1097-0215(19970106)70:1%3c14::AID-IJC3%3e3.0.CO;2-9. (PMID: 10.1002/(SICI)1097-0215(19970106)70:1<14::AID-IJC3>3.0.CO;2-98985085)
Bodian DL, Davis SJ, Morgan BP, Rushmere NK (1997) Mutational analysis of the active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59. J Exp Med 185:507–516. https://doi.org/10.1084/jem.185.3.507. (PMID: 10.1084/jem.185.3.50790534512196035)
Botto M, Kirschfink M, Macor P et al (2009) Complement in human diseases: lessons from complement deficiencies. Mol Immunol 46:2774–2783. https://doi.org/10.1016/J.MOLIMM.2009.04.029. (PMID: 10.1016/J.MOLIMM.2009.04.02919481265)
Brannen CL, Sodetz JM (2007) Incorporation of human complement C8 into the membrane attack complex is mediated by a binding site located within the C8β MACPF domain. Mol Immunol 44:960–965. https://doi.org/10.1016/J.MOLIMM.2006.03.012. (PMID: 10.1016/J.MOLIMM.2006.03.01216624411)
Brodsky RA (2014) Paroxysmal nocturnal hemoglobinuria. Blood 124:2804–2811. https://doi.org/10.1182/blood-2014-02-522128. (PMID: 10.1182/blood-2014-02-522128252372004215311)
Bubeck D (2014) The making of a macromolecular machine: assembly of the membrane attack complex. Biochemistry 53:1908–1915. https://doi.org/10.1021/bi500157z. (PMID: 10.1021/bi500157z24597946)
Campbell AK, Daw RA, Hallett MB, Luzio JP (1981) Direct measurement of the increase in intracellular free calcium ion concentration in response to the action of complement. Biochem J 194:551–560. https://doi.org/10.1042/bj1940551. (PMID: 10.1042/bj194055162727331162779)
Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5:981–986. https://doi.org/10.1038/ni1113. (PMID: 10.1038/ni111315454921)
Cooper NR, Müller-Eberhard HJ (1970) The reaction mechanism of human C5 in immune hemolysis. J Exp Med 132:775–793. https://doi.org/10.1084/jem.132.4.775. (PMID: 10.1084/jem.132.4.77555083772138854)
DiScipio RG, Chakravarti DN, Muller-Eberhard HJ, Fey GH (1988) The structure of human complement component C7 and the C5b–7 complex. J Biol Chem 263:549–560. (PMID: 10.1016/S0021-9258(19)57427-0)
DiScipio RG, Smith CA, Muller-Eberhard HJ, Hugli TE (1983) The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem 258:10629–10636. (PMID: 10.1016/S0021-9258(17)44503-0)
Donin N, Jurianz K, Ziporen L et al (2003) Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid. Clin Exp Immunol 131:254–263. https://doi.org/10.1046/j.1365-2249.2003.02066.x. (PMID: 10.1046/j.1365-2249.2003.02066.x125623851808622)
Dudkina NV, Spicer BA, Reboul CF et al (2016) Structure of the poly-C9 component of the complement membrane attack complex. Nat Commun 7:10588. https://doi.org/10.1038/ncomms10588. (PMID: 10.1038/ncomms10588268419344742998)
Dunkelberger JR, Song W-C (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50. https://doi.org/10.1038/cr.2009.139. (PMID: 10.1038/cr.2009.13920010915)
Fang C, Manes TD, Liu L et al (2019) ZFYVE21 is a complement-induced Rab5 effector that activates non-canonical NF-κB via phosphoinosotide remodeling of endosomes. Nat Commun 10:2247. https://doi.org/10.1038/s41467-019-10041-2. (PMID: 10.1038/s41467-019-10041-2311139536529429)
Farkas I, Baranyi L, Ishikawa Y et al (2002) CD59 blocks not only the insertion of C9 into MAC but inhibits ion channel formation by homologous C5b–8 as well as C5b–9. J Physiol 539:537–545. https://doi.org/10.1113/jphysiol.2001.013381. (PMID: 10.1113/jphysiol.2001.013381118826852290142)
Faruqi A, Henderson R (2007) Electronic detectors for electron microscopy. Curr Opin Struct Biol 17:549–555. https://doi.org/10.1016/J.SBI.2007.08.014. (PMID: 10.1016/J.SBI.2007.08.01417913494)
Fishelson Z, Donin N, Zell S et al (2003) Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40:109–123. https://doi.org/10.1016/S0161-5890(03)00112-3. (PMID: 10.1016/S0161-5890(03)00112-312914817)
Fletcher CM, Harrison RA, Lachmann PJ, Neuhaus D (1994) Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Structure 2:185–199. https://doi.org/10.1016/S0969-2126(00)00020-4. (PMID: 10.1016/S0969-2126(00)00020-47520819)
Fredslund F, Laursen NS, Roversi P et al (2008) Structure of and influence of a tick complement inhibitor on human complement component 5. Nat Immunol 9:753–760. https://doi.org/10.1038/ni.1625. (PMID: 10.1038/ni.162518536718)
Geis N, Zell S, Rutz R et al (2010) Inhibition of membrane complement inhibitor expression (CD46, CD55, CD59) by siRNA sensitizes tumor cells to complement attack in vitro. Curr Cancer Drug Targets 10:922–931. https://doi.org/10.2174/156800910793357952. (PMID: 10.2174/15680091079335795220879979)
Gelderman KA, Blok VT, Fleuren GJ, Gorter A (2002) The inhibitory effect of CD46, CD55, and CD59 on complement activation after immunotherapeutic treatment of cervical carcinoma cells with monoclonal antibodies or bispecific monoclonal antibodies. Lab Investig 82:483–493. https://doi.org/10.1038/labinvest.3780441. (PMID: 10.1038/labinvest.378044111950905)
Gerard NP, Gerard C (1991) The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614–617. https://doi.org/10.1038/349614a0. (PMID: 10.1038/349614a01847994)
Giddings KSK, Zhao J, Sims PPJ, Tweten RKR (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178. https://doi.org/10.1038/nsmb862. (PMID: 10.1038/nsmb86215543155)
Guo R-F, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852. https://doi.org/10.1146/annurev.immunol.23.021704.115835. (PMID: 10.1146/annurev.immunol.23.021704.11583515771587)
Hadders M, a, Beringer DX, Gros P, (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554. https://doi.org/10.1126/science.1147103. (PMID: 10.1126/science.114710317872444)
Hadders MA, Bubeck D, Roversi P et al (2012) Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 1:200–207. https://doi.org/10.1016/j.celrep.2012.02.003. (PMID: 10.1016/j.celrep.2012.02.003228321943314296)
Harriman GR, Esser AF, Podack ER et al (1981) The role of C9 in complement-mediated killing of Neisseria. J Immunol 127:2386–2390. (PMID: 6795273)
Heesterbeek DA, Bardoel BW, Parsons ES et al (2019) Bacterial killing by complement requires membrane attack complex formation via surface‐bound C5 convertases. EMBO J 38:e99852. https://doi.org/10.15252/embj.201899852.
Hillmen P, Young NS, Schubert J et al (2006) The Complement Inhibitor Eculizumab in paroxysmal nocturnal Hemoglobinuria. N Engl J Med 355:1233–1243. https://doi.org/10.1056/NEJMoa061648. (PMID: 10.1056/NEJMoa06164816990386)
Hoover DL, Berger M, Nacy CA et al (1984) Killing of Leishmania tropica amastigotes by factors in normal human serum. J Immunol 132:893–897. (PMID: 6690622)
Howard JF, Nowak RJ, Wolfe GI et al (2020) Clinical effects of the self-administered subcutaneous complement inhibitor Zilucoplan in patients with moderate to severe generalized Myasthenia Gravis. JAMA Neurol 17:e195125. https://doi.org/10.1001/jamaneurol.2019.5125. (PMID: 10.1001/jamaneurol.2019.5125)
Huang Y, Qiao F, Abagyan R et al (2006) Defining the CD59-C9 binding interaction. J Biol Chem 281:27398–27404. https://doi.org/10.1074/jbc.M603690200. (PMID: 10.1074/jbc.M60369020016844690)
Jane-wit D, Surovtseva YV, Qin L et al (2015) Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes. Proc Natl Acad Sci 112:9686–9691. https://doi.org/10.1073/pnas.1503535112. (PMID: 10.1073/pnas.1503535112261957604534258)
Jarvis GA, Li J, Hakulinen J et al (1997) Expression and function of the complement membrane attack complex inhibitor protectin (CD59) in human prostate cancer. Int J Cancer 71:1049–1055. https://doi.org/10.1002/(SICI)1097-0215(19970611)71:6%3c1049::AID-IJC22%3e3.0.CO;2-7. (PMID: 10.1002/(SICI)1097-0215(19970611)71:6<1049::AID-IJC22>3.0.CO;2-79185710)
Jayasundara K, Hollis A, Krahn M et al (2019) Estimating the clinical cost of drug development for orphan versus non-orphan drugs. Orphanet J Rare Dis 14:12. https://doi.org/10.1186/s13023-018-0990-4. (PMID: 10.1186/s13023-018-0990-4306304996327525)
Jendza K, Kato M, Salcius M et al (2019) (2019) A small-molecule inhibitor of C5 complement protein. Nat Chem Biol 157(15):666–668. https://doi.org/10.1038/s41589-019-0303-9. (PMID: 10.1038/s41589-019-0303-9)
Johnson S, Brooks NJ, Smith RAG et al (2013) Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 3:1369–1377. https://doi.org/10.1016/j.celrep.2013.04.029. (PMID: 10.1016/j.celrep.2013.04.029236652253675674)
Jore MM, Johnson S, Sheppard D et al (2016) Structural basis for therapeutic inhibition of complement C5. Nat Struct Mol Biol 23:378–386. https://doi.org/10.1038/nsmb.3196. (PMID: 10.1038/nsmb.3196270188025771465)
Jurianz K, Maslak S, Garcia-Schüler H et al (1999) Neutralization of complement regulatory proteins augments lysis of breast carcinoma cells targeted with rhumAb anti-HER2. Immunopharmacology 42:209–218. https://doi.org/10.1016/S0162-3109(99)00006-5. (PMID: 10.1016/S0162-3109(99)00006-510408382)
Koelman DLH, Brouwer MC, van de Beek D (2019) Targeting the complement system in bacterial meningitis. Brain 142:3325–3337. https://doi.org/10.1093/brain/awz222. (PMID: 10.1093/brain/awz222313736056821383)
Konovalova A, Kahne DE, Silhavy TJ (2017) Outer membrane biogenesis. Annu Rev Microbiol 71:539–556. https://doi.org/10.1146/annurev-micro-090816-093754. (PMID: 10.1146/annurev-micro-090816-093754288866805778897)
Langley R, Wines B, Willoughby N et al (2005) The Staphylococcal Superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-FcαRI binding and serum killing of bacteria. J Immunol 174:2926–2933. https://doi.org/10.4049/JIMMUNOL.174.5.2926. (PMID: 10.4049/JIMMUNOL.174.5.292615728504)
Laursen NS, Andersen KR, Braren I et al (2011) Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO J 30:606–616. https://doi.org/10.1038/emboj.2010.341. (PMID: 10.1038/emboj.2010.341212176423034014)
Laursen NS, Gordon N, Hermans S et al (2010) Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc Natl Acad Sci 107:3681–3686. https://doi.org/10.1073/PNAS.0910565107. (PMID: 10.1073/PNAS.0910565107201336852840425)
Law RHP, Lukoyanova N, Voskoboinik I et al (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451. https://doi.org/10.1038/nature09518. (PMID: 10.1038/nature0951821037563)
Lawrence SL, Gorman MA, Feil SC et al (2016) Structural basis for receptor recognition by the human CD59-responsive cholesterol-dependent cytolysins. Structure 24:1488–1498. https://doi.org/10.1016/j.str.2016.06.017. (PMID: 10.1016/j.str.2016.06.017274994405320943)
Leath KJ, Johnson S, Roversi P et al (2007) High-resolution structures of bacterially expressed soluble human CD59. Acta Crystallogr Sect F 63:648–652. https://doi.org/10.1107/S1744309107033477. (PMID: 10.1107/S1744309107033477)
Li X, Mooney P, Zheng S et al (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590. https://doi.org/10.1038/nmeth.2472. (PMID: 10.1038/nmeth.2472236445473684049)
Lovelace LL, Cooper CL, Sodetz JM, Lebioda L (2011) Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem 286:17585–17592. https://doi.org/10.1074/jbc.M111.219766. (PMID: 10.1074/jbc.M111.219766214545773093833)
Lueck K, Wasmuth S, Williams J et al (2011) Sub-lytic C5b–9 induces functional changes in retinal pigment epithelial cells consistent with age-related macular degeneration. Eye 25:1074–1082. https://doi.org/10.1038/eye.2011.109. (PMID: 10.1038/eye.2011.109215974833178225)
Mastellos DC, Ricklin D, Lambris JD (2019) Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov 18:707–729. https://doi.org/10.1038/s41573-019-0031-6. (PMID: 10.1038/s41573-019-0031-6313248747340853)
McHarg S, Clark SJ, Day AJ, Bishop PN (2015) Age-related macular degeneration and the role of the complement system. Mol Immunol 67:43–50. https://doi.org/10.1016/J.MOLIMM.2015.02.032. (PMID: 10.1016/J.MOLIMM.2015.02.03225804937)
Menny A, Serna M, Boyd CM et al (2018) CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat Commun 9:5316. https://doi.org/10.1038/s41467-018-07653-5. (PMID: 10.1038/s41467-018-07653-5305523286294249)
Meri S, Morgan BP, Davies A et al (1990) Human protectin (CD59), an 18000–20000 MW complement lysis restricting factor, inhibits C5b–8 catalysed insertion of C9 into lipid bilayers. Immunology 71:1–9. (PMID: 16987101384213)
Meri S, Waldmann H, Lachmann PJ (1991) Distribution of protectin (CD59), a complement membrane attack inhibitor, in normal human tissues. Lab Investig 65:532–537. (PMID: 1721667)
Mook-Kanamori BB, Brouwer MC, Geldhoff M et al (2014) Cerebrospinal fluid complement activation in patients with pneumococcal and meningococcal meningitis. J Infect 68:542–547. https://doi.org/10.1016/J.JINF.2013.12.016. (PMID: 10.1016/J.JINF.2013.12.01624412248)
Morgan BP (1989) Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J 264:1–14. https://doi.org/10.1042/BJ2640001. (PMID: 10.1042/BJ264000126908181133540)
Morgan BP (2016) The membrane attack complex as an inflammatory trigger. Immunobiology 221:747–751. https://doi.org/10.1016/J.IMBIO.2015.04.006. (PMID: 10.1016/J.IMBIO.2015.04.00625956457)
Morgan BP, Harris CL (2015) Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov 14:857–877. https://doi.org/10.1038/nrd4657. (PMID: 10.1038/nrd4657264937667098197)
Nakamura M, Okada H, Sasaki H et al (1996) Quantification of the CD55 and CD59, membrane inhibitors of complement on HIV-1 particles as a function of complement-mediated Virolysis. Microbiol Immunol 40:561–567. https://doi.org/10.1111/j.1348-0421.1996.tb01109.x. (PMID: 10.1111/j.1348-0421.1996.tb01109.x8887350)
Ninomiya H, Sims PJ (1992) The human complement regulatory protein CD59 binds to the alpha-chain of C8 and to the ‘b’domain of C9. J Biol Chem 267:13675–13680. (PMID: 10.1016/S0021-9258(18)42266-1)
Nishimura J-I, Yamamoto M, Hayashi S et al (2014) Genetic variants in C5 and poor response to Eculizumab. N Engl J Med 370:632–641. https://doi.org/10.1056/NEJMoa1311084. (PMID: 10.1056/NEJMoa131108424521109)
Noris M, Remuzzi G (2009) Atypical Hemolytic-uremic syndrome. N Engl J Med 361:1676–1687. https://doi.org/10.1056/NEJMra0902814. (PMID: 10.1056/NEJMra090281419846853)
Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 154:856–867. https://doi.org/10.1084/jem.154.3.856. (PMID: 10.1084/jem.154.3.8566912277)
Parker CL, Sodetz JM (2002) Role of the human C8 subunits in complement-mediated bacterial killing: evidence that C8γ is not essential. Mol Immunol 39:453–458. https://doi.org/10.1016/S0161-5890(02)00121-9. (PMID: 10.1016/S0161-5890(02)00121-912413696)
Parsons ES, Stanley GJ, Pyne ALB et al (2019) Single-molecule kinetics of pore assembly by the membrane attack complex. Nat Commun 10:2066. https://doi.org/10.1038/s41467-019-10058-7. (PMID: 10.1038/s41467-019-10058-7310613956502846)
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/JCC.20084. (PMID: 10.1002/JCC.2008415264254)
Podack E, Tschoop J, Muller-Eberhard H (1982) Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b–8 assembly. J Exp Med 156:268–282. https://doi.org/10.1084/jem.156.1.268. (PMID: 10.1084/jem.156.1.26861778222186720)
Podack ER (1984) Molecular composition of the tubular structure of the membrane attack complex of complement. J Biol Chem 259:8641–8647. (PMID: 10.1016/S0021-9258(17)39778-8)
Podack ER, Esser AF, Biesecker G, Müller-Eberhard HJ (1980) Membrane attack complex of complement: a structural analysis of its assembly. J Exp Med 151:301–313. https://doi.org/10.1084/jem.151.2.301. (PMID: 10.1084/jem.151.2.3017356725)
Polekhina G, Giddings KS, Tweten RK, Parker MW (2005) Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc Natl Acad Sci 102:600–605. https://doi.org/10.1073/pnas.0403229101. (PMID: 10.1073/pnas.040322910115637162545513)
Preissner KP, Podack ER, Müller-Eberhard HJ (1989) SC5b-7, SC5b-8 and SC5b-9 complexes of complement: ultrastructure and localization of the S-protein (vitronectin) within the macromolecules. Eur J Immunol 19:69–75. https://doi.org/10.1002/eji.1830190112. (PMID: 10.1002/eji.18301901122465906)
Preissner KT, Podack ER, Müller-Eberhard HJ (1985) The membrane attack complex of complement: relation of C7 to the metastable membrane binding site of the intermediate complex C5b–7. J Immunol 135:445–451. (PMID: 3998468)
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. https://doi.org/10.1038/nmeth.4169. (PMID: 10.1038/nmeth.416928165473)
Reichhardt MP, Johnson S, Tang T et al (2020) An inhibitor of complement C5 provides structural insights into activation. Proc Natl Acad Sci 117:362–370. https://doi.org/10.1073/PNAS.1909973116. (PMID: 10.1073/PNAS.190997311631871188)
Ricardo A, Arata M, DeMarco SJ et al (2014) Development of RA101348, a potent cyclic peptide inhibitor of C5 for complement-mediated diseases. Blood 124:2936–2936. https://doi.org/10.1182/blood.V124.21.2936.2936. (PMID: 10.1182/blood.V124.21.2936.2936)
Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797. https://doi.org/10.1038/ni.1923. (PMID: 10.1038/ni.1923207205862924908)
Ricklin D, Reis ES, Lambris JD (2016) Complement in disease: a defence system turning offensive. Nat Rev Nephrol 12:383–401. https://doi.org/10.1038/nrneph.2016.70. (PMID: 10.1038/nrneph.2016.70272118704974115)
Rosado CJ, Buckle AM, Law RHP et al (2007) A Common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551. https://doi.org/10.1126/science.1144706. (PMID: 10.1126/science.114470617717151)
Rossjohn J, Feil SC, McKinstry WJ et al (1997) Structure of a cholesterol-binding, Thiol-activated Cytolysin and a model of its membrane form. Cell 89:685–692. https://doi.org/10.1016/S0092-8674(00)80251-2. (PMID: 10.1016/S0092-8674(00)80251-29182756)
Rother RP, Rollins SA, Mojcik CF et al (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264. https://doi.org/10.1038/nbt1344. (PMID: 10.1038/nbt134417989688)
Roumenina LT, Loirat C, Dragon-Durey M-A et al (2011) Alternative complement pathway assessment in patients with atypical HUS. J Immunol Methods 365:8–26. https://doi.org/10.1016/J.JIM.2010.12.020. (PMID: 10.1016/J.JIM.2010.12.02021215749)
Schatz-Jakobsen JA, Zhang Y, Johnson K et al (2016) Structural basis for Eculizumab-mediated inhibition of the complement terminal pathway. J Immunol 197:337–344. https://doi.org/10.4049/JIMMUNOL.1600280. (PMID: 10.4049/JIMMUNOL.160028027194791)
Schneider MC, Exley RM, Ram S et al (2007) Interactions between Neisseria meningitidis and the complement system. Trends Microbiol 15:233–240. https://doi.org/10.1016/j.tim.2007.03.005. (PMID: 10.1016/j.tim.2007.03.00517398100)
Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7:10587. https://doi.org/10.1038/ncomms10587. (PMID: 10.1038/ncomms10587268418374743022)
Sharp TH, Koster AJ, Gros P (2016) Heterogeneous MAC initiator and pore structures in a lipid bilayer by phase-plate Cryo-electron tomography. Cell Rep 15:1–8. https://doi.org/10.1016/j.celrep.2016.03.002. (PMID: 10.1016/j.celrep.2016.03.00227052168)
Shatursky O, Heuck AP, Shepard LA et al (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299. https://doi.org/10.1016/s0092-8674(00)81660-8. (PMID: 10.1016/s0092-8674(00)81660-810555145)
Shepard LA, Heuck AP, Hamman BD et al (1998) Identification of a membrane-spanning domain of the Thiol-activated Pore-forming Toxin Clostridium perfringens Perfringolysin O: an α-Helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574. https://doi.org/10.1021/BI981452F. (PMID: 10.1021/BI981452F9772185)
Silversmith RE, Nelsestuen GL (1986) Interaction of complement proteins C5b–6 and C5b–7 with phospholipid vesicles: effects of phospholipid structural features. Biochemistry 25:7717–7725. https://doi.org/10.1021/bi00371a065. (PMID: 10.1021/bi00371a0653801440)
Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22:7359–7368. https://doi.org/10.1038/sj.onc.1206939. (PMID: 10.1038/sj.onc.120693914576843)
Spicer BA, Law RHP, Caradoc-Davies TT et al (2018) The first transmembrane region of complement component-9 acts as a brake on its self-assembly. Nat Commun 9:3266. https://doi.org/10.1038/s41467-018-05717-0. (PMID: 10.1038/s41467-018-05717-0301118856093860)
Steckel EW, Welbaum BE, Sodetz JM (1983) Evidence of direct insertion of terminal complement proteins into cell membrane bilayers during cytolysis. Labeling by a photosensitive membrane probe reveals a major role for the eighth and ninth components. J Biol Chem 258:4318–4324. (PMID: 10.1016/S0021-9258(18)32625-5)
Stewart JL, Kolb WP, Sodetz JM (1987) Evidence that C5b recognizes and mediates C8 incorporation into the cytolytic complex of complement. J Immunol 139:1960–1964. (PMID: 3624872)
Sugita Y, Nakano Y, Oda E et al (1993) Determination of carboxyl-terminal residue and bisulfide bonds of MACIF (CD59), a Glycosyl-phosphatidylinositol-anchored membrane protein. J Biochem 114:473–477. https://doi.org/10.1093/oxfordjournals.jbchem.a124202. (PMID: 10.1093/oxfordjournals.jbchem.a1242028276756)
Tomlinson S, Taylor PW, Morgan BP, Luzio JP (1989) Killing of gram-negative bacteria by complement. Fractionation of cell membranes after complement C5b–9 deposition on to the surface of Salmonella minnesota Re595. Biochem J 263:505–511. https://doi.org/10.1042/bj2630505. (PMID: 10.1042/bj263050525971211133457)
Treon SP, Mitsiades C, Mitsiades N et al (2001) Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J Immunother 24:263–271. (PMID: 10.1097/00002371-200105000-00011)
Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126:2903–2913. https://doi.org/10.1242/JCS.124388. (PMID: 10.1242/JCS.12438823613465)
Tschopp J, Podack ER, Müller-Eberhard HJ (1985) The membrane attack complex of complement: C5b–8 complex as accelerator of C9 polymerization. J Immunol 134:495–499. (PMID: 3964819)
Tweten RK (2005) Cholesterol-dependent Cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209. https://doi.org/10.1128/IAI.73.10.6199-6209.2005. (PMID: 10.1128/IAI.73.10.6199-6209.2005161772911230961)
Varsano R, Shapiro et al (1998) Human lung cancer cell lines express cell membrane complement inhibitory proteins and are extremely resistant to complement‐mediated lysis; a comparison with normal human respiratory epithelium in vitro , and an insight into mechanism(s) of resistance. Clin Exp Immunol 113:173–182. https://doi.org/10.1046/j.1365-2249.1998.00581.x.
Vogel C-W, Fritzinger DC (2010) Cobra venom factor: structure, function, and humanization for therapeutic complement depletion. Toxicon 56:1198–1222. https://doi.org/10.1016/J.TOXICON.2010.04.007. (PMID: 10.1016/J.TOXICON.2010.04.00720417224)
Weiner GJ (2010) Rituximab: mechanism of action. Semin Hematol 47:115–123. https://doi.org/10.1053/J.SEMINHEMATOL.2010.01.011. (PMID: 10.1053/J.SEMINHEMATOL.2010.01.011203506582848172)
Woodruff TM, Nandakumar KS, Tedesco F (2011) Inhibiting the C5–C5a receptor axis. Mol Immunol 48:1631–1642. https://doi.org/10.1016/J.MOLIMM.2011.04.014. (PMID: 10.1016/J.MOLIMM.2011.04.01421549429)
Wu S, Armache J-P, Cheng Y (2016) Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy 65:35–41. https://doi.org/10.1093/jmicro/dfv355. (PMID: 10.1093/jmicro/dfv35526546989)
Xie CB, Jane-wit D, Pober JS (2020) Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets. Am J Pathol. https://doi.org/10.1016/J.AJPATH.2020.02.006. (PMID: 10.1016/J.AJPATH.2020.02.006328580167280757)
Yorulmaz S, Tabaei SR, Kim M et al (2015) Membrane attack complex formation on a supported lipid bilayer: initial steps towards a CARPA predictor nanodevice. Eur J Nanomedicine 7:245–255. https://doi.org/10.1515/ejnm-2015-0016. (PMID: 10.1515/ejnm-2015-0016)
You T, Hu W, Ge X et al (2011) Application of a novel inhibitor of human CD59 for the enhancement of complement-dependent cytolysis on cancer cells. Cell Mol Immunol 8:157–163. https://doi.org/10.1038/cmi.2010.35. (PMID: 10.1038/cmi.2010.35212583604003131)
Zipfel PF, Wiech T, Rudnick R et al (2019) Complement inhibitors in clinical trials for glomerular diseases. Front Immunol 10:2166. https://doi.org/10.3389/fimmu.2019.02166. (PMID: 10.3389/fimmu.2019.02166316118706776600)
Zivanov J, Nakane T, Forsberg BO et al (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7:e42166. https://doi.org/10.7554/eLife.42166. (PMID: 10.7554/eLife.4216662504256250425)
Zuber J, Fakhouri F, Roumenina LT et al (2012) Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 8:643–657. https://doi.org/10.1038/nrneph.2012.214. (PMID: 10.1038/nrneph.2012.21423026949)
فهرسة مساهمة: Keywords: C5; Complement therapeutics; Cryo electron microscopy; MACPF; Membrane attack complex; Structure-guided drug discovery
المشرفين على المادة: 0 (Complement Membrane Attack Complex)
تواريخ الأحداث: Date Created: 20201130 Date Completed: 20210210 Latest Revision: 20210922
رمز التحديث: 20240628
DOI: 10.1007/978-3-030-58971-4_7
PMID: 33252733
قاعدة البيانات: MEDLINE
الوصف
تدمد:0306-0225
DOI:10.1007/978-3-030-58971-4_7