دورية أكاديمية

Gigantic Current Control of Coercive Field and Magnetic Memory Based on Nanometer-Thin Ferromagnetic van der Waals Fe 3 GeTe 2 .

التفاصيل البيبلوغرافية
العنوان: Gigantic Current Control of Coercive Field and Magnetic Memory Based on Nanometer-Thin Ferromagnetic van der Waals Fe 3 GeTe 2 .
المؤلفون: Zhang K; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea.; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea.; Center for Quantum Materials, Seoul National University, Seoul, 08826, South Korea., Han S; Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea., Lee Y; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea.; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea.; Center for Quantum Materials, Seoul National University, Seoul, 08826, South Korea., Coak MJ; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea.; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea., Kim J; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea.; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea.; Center for Quantum Materials, Seoul National University, Seoul, 08826, South Korea., Hwang I; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea.; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea.; Center for Quantum Materials, Seoul National University, Seoul, 08826, South Korea., Son S; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea.; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea.; Center for Quantum Materials, Seoul National University, Seoul, 08826, South Korea., Shin J; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea., Lim M; Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea., Jo D; Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea., Kim K; Korea Atomic Energy Research Institute, 111 Daedeok-daero, Daejeon, 34057, South Korea., Kim D; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea., Lee HW; Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea.; Asia Pacific Center for Theoretical Physics, 77 Cheongam-ro, Nam-gu, Pohang, 3773, South Korea., Park JG; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea.; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, South Korea.; Center for Quantum Materials, Seoul National University, Seoul, 08826, South Korea.
المصدر: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2021 Jan; Vol. 33 (4), pp. e2004110. Date of Electronic Publication: 2020 Dec 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9885358 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4095 (Electronic) Linking ISSN: 09359648 NLM ISO Abbreviation: Adv Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
مستخلص: Controlling magnetic states by a small current is essential for the next-generation of energy-efficient spintronic devices. However, it invariably requires considerable energy to change a magnetic ground state of intrinsically quantum nature governed by fundamental Hamiltonian, once stabilized below a phase-transition temperature. Here, it is reported that, surprisingly, an in-plane current can tune the magnetic state of the nanometer-thin van der Waals ferromagnet Fe 3 GeTe 2 from a hard magnetic state to a soft magnetic state. It is a direct demonstration of the current-induced substantial reduction of the coercive field. This surprising finding is possible because the in-plane current produces a highly unusual type of gigantic spin-orbit torque for Fe 3 GeTe 2 . In addition, a working model of a new nonvolatile magnetic memory based on the principle of the discovery in Fe 3 GeTe 2 , controlled by a tiny current, is further demonstrated. The findings open up a new window of exciting opportunities for magnetic van der Waals materials with potentially huge impact on the future development of spintronic and magnetic memory.
(© 2020 Wiley-VCH GmbH.)
References: J. G. Park, J. Phys.: Condens. Matter 2016, 28, 301001.
C. T. Kuo, M. Neumann, K. Balamurugan, H. J. Park, S. Kang, H. W. Shiu, J. H. Kang, B. H. Hong, M. Han, T. W. Noh, J. G. Park, Sci. Rep. 2016, 6, 20904.
J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C. H. Park, J. G. Park, H. Cheong, Nano Lett. 2016, 16, 7433.
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu, Nature 2017, 546, 270.
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang, Nature 2017, 546, 265.
K. S. Burch, D. Mandrus, J. G. Park, Nature 2018, 563, 47.
K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac9439.
D. R. Klein, D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, P. Canfield, J. Fernandez-Rossier, P. Jarillo-Herrero, Science 2018, 360, 1218.
T. Song, X. Cai, M. W. Tu, X. Zhang, B. Huang, N. P. Wilson, K. L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, X. Xu, Science 2018, 360, 1214.
S. Son, M. J. Coak, N. Lee, J. Kim, T. Y. Kim, H. Hamidov, H. Cho, C. Liu, D. M. Jarvis, P. A. C. Brown, J. H. Kim, C.-H. Park, D. I. Khomskii, S. S. Saxena, J.-G. Park, Phys. Rev. B 2019, 99, 041402.
M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Nat. Nanotechnol. 2019, 14, 408.
K. Kim, J. Seo, E. Lee, K. T. Ko, B. S. Kim, B. G. Jang, J. M. Ok, J. Lee, Y. J. Jo, W. Kang, J. H. Shim, C. Kim, H. W. Yeom, B. Il Min, B. J. Yang, J. S. Kim, Nat. Mater. 2018, 17, 794.
C. Tan, J. Lee, S. G. Jung, T. Park, S. Albarakati, J. Partridge, M. R. Field, D. G. McCulloch, L. Wang, C. Lee, Nat. Commun. 2018, 9, 1554.
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, Y. Zhang, Nature 2018, 563, 94.
S. Albarakati, C. Tan, Z. J. Chen, J. G. Partridge, G. Zheng, L. Farrar, E. L. H. Mayes, M. R. Field, C. Lee, Y. Wang, Y. Xiong, M. Tian, F. Xiang, A. R. Hamilton, O. A. Tretiakov, D. Culcer, Y. J. Zhao, L. Wang, Sci. Adv. 2019, 5, eaaw0409.
M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsignon, D. Givord, Science 2007, 315, 349.
B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, X. Xu, Nat. Nanotechnol. 2018, 13, 544.
S. Jiang, L. Li, Z. Wang, K. F. Mak, J. Shan, Nat. Nanotechnol. 2018, 13, 549.
Z. Wang, T. Zhang, M. Ding, B. Dong, Y. Li, M. Chen, X. Li, J. Huang, H. Wang, X. Zhao, Y. Li, D. Li, C. Jia, L. Sun, H. Guo, Y. Ye, D. Sun, Y. Chen, T. Yang, J. Zhang, S. Ono, Z. Han, Z. Zhang, Nat. Nanotechnol. 2018, 13, 554.
K. S. Burch, Nat. Nanotechnol. 2018, 13, 532.
T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, Y. Suzuki, Nat. Nanotechnol. 2009, 4, 158.
L. Liu, C. F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, R. A. Buhrman, Science 2012, 336, 555.
P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M. D. Stiles, Phys. Rev. B 2013, 87, 174411.
J. Yu, D. Bang, R. Mishra, R. Ramaswamy, J. H. Oh, H. J. Park, Y. Jeong, P. Van Thach, D. K. Lee, G. Go, S. W. Lee, Y. Wang, S. Shi, X. Qiu, H. Awano, K. J. Lee, H. Yang, Nat. Mater. 2019, 18, 29.
X. Wang, J. Tang, X. Xia, C. He, J. Zhang, Y. Liu, C. Wan, C. Fang, C. Guo, W. Yang, Y. Guang, X. Zhang, H. Xu, J. Wei, M. Liao, X. Lu, J. Feng, X. Li, Y. Peng, H. Wei, R. Yang, D. Shi, X. Zhang, Z. Han, Z. Zhang, G. Zhang, G. Yu, X. Han, Sci. Adv. 2019, 5, eaaw8904.
M. Alghamdi, M. Lohmann, J. Li, P. R. Jothi, Q. Shao, M. Aldosary, T. Su, B. Fokwa, J. Shi, Nano Lett. 2019, 19, 4400.
Ø. Johansen, V. Risinggård, A. Sudbø, J. Linder, A. Brataas, Phys. Rev. Lett. 2019, 122, 217203.
K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blugel, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Nat. Nanotechnol. 2013, 8, 587.
S. Y. Park, D. S. Kim, Y. Liu, J. Hwang, Y. Kim, W. Kim, J. Y. Kim, C. Petrovic, C. Hwang, S. K. Mo, H. J. Kim, B. C. Min, H. C. Koo, J. Chang, C. Jang, J. W. Choi, H. Ryu, Nano Lett. 2020, 20, 95.
G. Zheng, W.-Q. Xie, S. Albarakati, M. Algarni, C. Tan, Y. Wang, J. Peng, J. Partridge, L. Farrar, J. Yi, Y. Xiong, M. Tian, Y.-J. Zhao, L. Wang, Phys. Rev. Lett. 2020, 125, 047202.
J. Kim, S. Son, M. J. Coak, I. Hwang, Y. Lee, K. Zhang, J.-G. Park, J. Appl. Phys. 2020, 128, 093901.
Q. Li, M. Yang, C. Gong, R. V. Chopdekar, A. T. N'Diaye, J. Turner, G. Chen, A. Scholl, P. Shafer, E. Arenholz, A. K. Schmid, S. Wang, K. Liu, N. Gao, A. S. Admasu, S. W. Cheong, C. Hwang, J. Li, F. Wang, X. Zhang, Z. Qiu, Nano Lett. 2018, 18, 5974.
D. Givord, Q. Lu, M. F. Rossignol, P. Tenaud, T. Viadieu, J. Magn. Magn. Mater. 1990, 83, 183.
D. Givord, M. Rossignol, V. M. T. S. Barthem, J. Magn. Magn. Mater. 2003, 258-259, 1.
N. H. D. Khang, Y. Ueda, P. N. Hai, Nat. Mater. 2018, 17, 808.
D. Culcer, A. Cem Keser, Y. Li, G. Tkachov, 2D Mater. 2020, 7, 022007.
J. J. Bean, K. P. McKenna, Phys. Rev. Mater. 2018, 2, 125002.
H. Bouchikhaoui, P. Stender, Z. Balogh, D. Baither, A. Hütten, K. Hono, G. Schmitz, Acta Mater. 2016, 116, 298.
M. Cubukcu, O. Boulle, M. Drouard, K. Garello, C. O. Avci, I. M. Miron, J. Langer, B. Ocker, P. Gambardella, G. Gaudin, Appl. Phys. Lett. 2014, 104, 042406.
Y. Shao, W. X. Lv, J. J. Guo, B. T. Qi, W. M. Lv, S. K. Li, G. H. Guo, Z. M. Zeng, Appl. Phys. Lett. 2020, 116, 092401.
M. Dc, R. Grassi, J. Y. Chen, M. Jamali, D. Reifsnyder Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, J. P. Wang, Nat. Mater. 2018, 17, 800.
معلومات مُعتمدة: IBS-R009-G1 Institute for Basic Science (IBS) in Korea; 2020R1A3B2079375 National Research Foundation of Korea; BA-1501-07 Samsung Science and Technology Foundation; BA-1501-51 Samsung Science and Technology Foundation; BA-1501-07 Samsung; 016R1D1A1B02008461 Ministry of Education, Science and Technology
فهرسة مساهمة: Keywords: 2D topological ferromagnetic metal Fe3GeTe2; current-tunable coercive field; magnetic van der Waals materials; spintronic and magnetic memory; unusually large spin-orbit torque
تواريخ الأحداث: Date Created: 20201207 Latest Revision: 20210222
رمز التحديث: 20221213
DOI: 10.1002/adma.202004110
PMID: 33283320
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4095
DOI:10.1002/adma.202004110