دورية أكاديمية

Evidence for cometabolic transformation of weathered toxaphene under aerobic conditions using camphor as a co-substrate.

التفاصيل البيبلوغرافية
العنوان: Evidence for cometabolic transformation of weathered toxaphene under aerobic conditions using camphor as a co-substrate.
المؤلفون: Prieto I; Departamento de Biología, Facultad de Ciencias, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Bogotá, D.C., Colombia., Klimm A; Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany., Roldán F; Departamento de Biología, Facultad de Ciencias, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Bogotá, D.C., Colombia., Vetter W; Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany., Arbeli Z; Departamento de Biología, Facultad de Ciencias, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Bogotá, D.C., Colombia.
المصدر: Journal of applied microbiology [J Appl Microbiol] 2021 Jul; Vol. 131 (1), pp. 221-235. Date of Electronic Publication: 2020 Dec 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 9706280 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2672 (Electronic) Linking ISSN: 13645072 NLM ISO Abbreviation: J Appl Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2022- : Oxford : Oxford University Press
Original Publication: Oxford : Published for the Society for Applied Bacteriology by Blackwell Science, c1997-
مواضيع طبية MeSH: Bacteria/*metabolism , Camphor/*metabolism , Insecticides/*metabolism , Toxaphene/*metabolism, Aerobiosis ; Bacteria/classification ; Biodegradation, Environmental ; Biotransformation ; Chlorine/metabolism ; Flame Ionization ; RNA, Ribosomal, 16S/genetics ; Soil/chemistry ; Soil Microbiology
مستخلص: Aims: Toxaphene is a persistent organic pollutant, composed of approximately 1000 highly chlorinated bicyclic terpenes. The purpose of this study was to evaluate if camphor, a structural analogue of toxaphene, could stimulate aerobic biotransformation of weathered toxaphene.
Methods and Results: Two enrichment cultures that degrade camphor as the sole carbon source were established from contaminated soil and biosolids. These cultures were used to evaluate aerobic transformation of weathered toxaphene. Only the biosolids culture could transform compounds of technical toxaphene (CTTs) in the presence of camphor, while no transformation was observed in the presence of glucose or with toxaphene as a sole carbon source. The transformed toxaphene had lower concentration of CTTs with longer retention times, and higher concentration of compounds with lower retention times. Gas chromatography with electron capture negative ion mass spectrometry (GC/ECNI-MS) showed that aerobic biotransformation mainly occurred with Cl 8 - and Cl 9 -CTTs compounds. The patterns of Cl 6 - and Cl 7 -CTTs were also simplified albeit to a much lesser extent. Seven camphor-degrading bacteria were isolated from the enrichment culture but none of them could degrade toxaphene.
Conclusion: Camphor degrading culture can aerobically transform CCTs via reductive pathway probably by co-metabolism using camphor as a co-substrate.
Significance and Impact of the Study: Since camphor is naturally produced by different plants, this study suggests that stimulation of aerobic transformation of toxaphene may occur in nature. Moreover plants, which produce camphor or similar compounds, might be used in bioremediation of contaminated soils.
(© 2020 The Society for Applied Microbiology.)
References: Ahmed, M. and Focht, D.D. (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol 19, 47-52.
Arbeli, Z. (2009) Biodegradación de compuestos orgánicos persistentes (COP): I. el caso de los bifenilospoliclorados (PCB). Acta Biol Colomb 14, 56-86.
Avila-Arias, H., Avellaneda, H., Garzón, V., Rodríguez, G., Arbeli, Z., Garcia-Bonilla, E., Villegas-Plazas, S. and Roldan, F. (2017) Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria. J Appl Microbiol 123, 401-413.
Bhuvaneswari, G. (2013) Molecular characterization of camphor utilizing bacterial isolates from refinery sludge and detection of target loci-Cytochrome P-450 cam mono oxygenase (cam C gene) by PCR and gene probe. SpringerPlus 2, 170.
Boon, J.P., Sleiderink, H.M., Helle, M.S., Dekker, M., van Schanke, A., Roex, E., Hillebrand, M.T., Klamer, H.J. et al. (1998) The use of microsomal in vitro assay to study phase I biotransformation of chlorobornanes (toxaphene) in marine mammals and birds. Possible consequences of biotransformation for bioaccumulation and genotoxicity. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121, 385-403.
Buser, H., Haglund, P., Müller, M., Poiger, T. and Rappe, C. (2000) Rapid anaerobic degradation of toxaphene in sewage sludge. Chemosphere 40, 1213-1220.
Carvalho, F.P., Montenegro-Guillén, S., Villeneuve, J.P., Cattini, C., Tolosa, I., Bartocci, J., Lacayo-Romero, M. and Cruz-Granja, A. (2003) Toxaphene residues from cotton fields in soils and in the coastal environment of Nicaragua. Chemosphere 53, 627-636.
Chen, W., Vermaak, I. and Viljoen, A. (2013) Camphor - a fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon - a review. Molecules 18, 5434-5454.
Clark, J.M. and Matsuma, F. (1979) Metabolism of toxaphene by aquatic sediment and a camphor-degrading Pseudomonad. Arch Environ Contam Toxicol 8, 285-298.
Evans, B.S., Dudley, C.A. and Klasson, K.T. (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl Biochem Biotechnol 57-58, 885-894.
Fingerling, G., Herkorn, N. and Parlar, H. (1996) Formation and spectroscopic investigation of two hexachlorobornanes from six environmentally relevant toxaphene components by reductive dechlorination in soil under anaerobic conditions. Environ Sci Technol 30, 2984-2992.
Fingerling, M. and Parlar, H. (1997) Spectroscopic characterization of 7b,8c,9c-trichlorocamphene-2-one formed from toxaphene components in an anaerobic soil. J Agric Food Chem 45, 4116-4121.
Fisher, B. (1999) Most unwanted. Environ Health Persp 107, A18-A23.
Gauthier, E., Déziel, E., Villemur, R., Juteau, P., Lépine, F. and Beaudet, R. (2003) Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. J Appl Microbiol 94, 301-311.
de Geus, H.-J., Besselink, H., Brouwer, A., Klungsøyr, J., McHugh, B., Nixon, E., Rimkus, G.G., Wester, P.G. et al. (1999) Environmental occurrence, analysis, and toxicology of toxaphene compounds. Environ Health Persp 107, 115-144.
Greule, A., Stok, J.E., De Voss, J.J. and Cryle, M.J. (2018) Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 35, 757-791.
Grogan, G., Roberts, G.A., Parsons, S., Turner, N.J. and Flitsch, S.L. (2002) P450(camr), a cytochrome P450 catalysing the stereospecific 6- endo-hydroxylation of (1 R)-(+)-camphor. Appl Microbiol Biotechnol 59, 449-454.
Hay, A.G. and Focht, D.D. (1998) Cometabolism of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64, 2141-2146.
Hernandez, B.S., Koh, S.-C., Chial, M. and Focht, D.D. (1997) Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8, 153-158.
van Hezik, C.M., Letcher, R.J., de Geus, H.J., Wester, P.G., Goksøyr, A., Lewis, W.E. and Boon, J.P. (2001) Indications for the involvement of a CYP3A-like iso-enzyme in the metabolism of chlorobornane (Toxaphene) congeners in seals from inhibition studies with liver microsomes. Aquat Toxicol 51, 319-333.
Izaguirre, G., Wolfe, R.L. and Means, E.G. III (1988) Degradation of 2-methylisoborneol by aquatic bacteria. Appl Environ Microbiol 54, 2424-2431.
Jeon, J.R., Murugesan, K., Baldrian, P., Schmidt, S. and Chang, Y.S. (2016) Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction. Curr Opin Biotechnol 38, 71-78.
Ji, L., Zhang, J., Liu, W. and de Visser, S.P. (2014) Metabolism of halogenated alkanes by cytochrome P450 enzymes. Aerobic oxidation versus anaerobic reduction. Chem Asian J 9, 1175-1182.
Joußen, N., Heckel, D.G., Haas, M., Schuphan, I. and Schmidt, B. (2008) Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64, 65-73.
Kapp, T. and Vetter, W. (2009) Offline coupling of high-speed counter-current chromatography and gas chromatography/mass spectrometry generates a two-dimensional plot of toxaphene components. J Chromatogr A 1216, 8391-8397.
Kapp, T. and Vetter, W. (2011) Hydroxylated polychlorobornanes - synthesis and characterization of new potential toxaphene metabolites. Chemosphere 82, 32-36.
Korytár, P., Stee, L., Leonards, P., de Boer, J. and Brinkman, U. (2003) Attempt to unravel the composition of toxaphene by comprehensive two-dimensional gas chromatography with selective detection. J Chromatogr A 994, 179-189.
Lacayo, M., van Bavel, B. and Mattiasson, B. (2004) Degradation of toxaphene in water during anaerobic and aerobic conditions. Environ Pollut 130, 437-443.
Lacayo, M., Quillaguamán, J., Baveld, B. and Mattiasson, B. (2005) A toxaphene-degrading bacterium related to Enterobacter cloacae, strain D1 isolated from aged contaminated soil in Nicaragua. Syst Appl Microbiol 28, 632-639.
Lacayo, M., Terrazas, E., van Bavel, B. and Mattiasson, B. (2006) Degradation of toxaphene by Bjerkandera sp. strain BOL13 using waste biomass as a cosubstrate. Appl Microbiol Biotechnol 71, 549-554.
Maruya, K.A., Wakeham, S.G., Vetter, W. and Francendese, L. (2000) Prominent chlorobornane residues in estuarine sediments contaminated with toxaphene. Environ Toxicol Chem 19, 2198-2203.
Matsumoto, E., Kawanaka, Y., Yun, S. and Oyaizu, H. (2008) Isolation of dieldrin- and endrin-degrading bacteria using 1,2-epoxycyclohexane as a structural analog of both compounds. Appl Microbiol Biotechnol 80, 1095-1103.
MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial) (2007) Consolidación del inventario de plaguicidas COP.
MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial) (2010) Análisis de riesgo del sitio contaminado antiguas bodegas de la central algodonera en liquidación (CENALGODÓN) en el corregimiento de Caracolicito, municipio de el Copey (Cesar). Informe. Facultad de Agronomía, Universidad Nacional de Colombia Sede Bogotá, Colombia.
Mirsatari, S.G., McChesney, M.H., Craigmill, A.C., Winterlin, W.L. and Seiber, J.N. (1987) Anaerobic microbial dechlorination: An approach to on-site treatment of toxaphene-contaminated soil. J Environ Sci Health B 22, 663-690.
Miskimmin, B.M., Muir, D.C., Schindler, D.W., Stern, G.A. and Grift, N.P. (1995) Chlorobornanes in sediments and fish 30 years after toxaphene treatment of lakes. Environ Sci Technol 29, 2490-2495.
Nagata, Y., Endo, R., Ito, M., Ohtsubo, Y. and Tsuda, M. (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76, 741-752.
Nash, R.G. and Woolson, E.A. (1967) Persistence of chlorinated hydrocarbon insecticides in soils. Science 157, 924-927.
Ngadiman, N., Suenaga, H., Goto, M. and Furukawa, K. (2005) Distribution of camphor monooxygenase genes in soil bacteria. Indonesian J Biotechnol 10, 848-853.
Parr, J.F. and Smith, S. (1976) Degradation of toxaphene in selected anaerobic soil environments. Soil Sci 121, 52-57.
Phillips, T., Bel, G., Raymond, D., Shaw, K. and Seech, A. (2001) DARAMEND technology for in situ bioremediation of soil containing organochlorine pesticides. 6th International HCH and Pesticides Forum.
Pieper, D.H. (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67, 170-191.
Reger, L., Gallistl, C., Skírnisson, K. and Vetter, W. (2017) Analysis and characterization of polychlorinated hydroxybornanes as metabolites of toxaphene using a polar bear model. Environ Sci Technol 51, 8335-8342.
Ronen, Z. and Abeliovich, A. (2000) Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl Environ Microbiol 66, 2372-2377.
Ruppe, S., Neumann, A. and Vetter, W. (2003) Anaerobic transformation of compounds of technical toxaphene. I. Regiospecific reaction of chlorobornanes with geminal chlorine atoms. Environ Toxicol Chem 22, 2614-2621.
Ruppe, S., Neumann, A., Braekevelt, E., Tomy, G., Stern, G., Maruya, K. and Vetter, W. (2004) Anaerobic transformation of compounds of technical toxaphene. 2. Fate of compounds lacking geminal chlorine atoms. Environ Toxicol Chem 23, 591-598.
Saleh, M.A. (1991) Toxaphene: chemistry, biochemistry, toxicity and environmental fate. Rev Environ Contam Toxicol 118, 1-85.
Seech, A., Bolanos-Shaw, K., Hill, D. and Molin, J. (2008) In situ bioremediation of pesticides in soil and groundwater. Remediation J 19, 87-98.
Singer, A., Crowley, D. and Thompson, I. (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21, 123-130.
Smidt, H. and de Vos, W.M. (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58, 43-73.
Smith, S. and Willis, G.H. (1978) Disppearance of residual toxaphene in a Mississippi delta soil. Soil Sci 126, 87-93.
Stern, G.A., Loewen, M.D., Miskimmin, B.M., Muir, D.C.G. and Westmore, J.B. (1996) Characterization of two major toxaphene components in treated lake sediment. Environ Sci Technol 30, 2251-2258.
Urlacher, V.B. and Girhard, M. (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30, 26-36.
Vetter, W. (1993) Toxaphene. Theoretical aspects of the distribution of chlorinated bornanes including symmetrical aspects. Chemosphere 26, 1079-1084.
Vetter, W. and Kirchberg, D. (2001) Production of toxaphene enantiomers by enantioselective HPLC after isolation of the compounds from an anaerobically degraded technical mixture. Environ Sci Technol 35, 960-965.
Vetter, W. and Oehme, M. (2000) Toxaphene: analysis and environmental fate of congeners. In Handbook of Environmental Chemistry, vol. 3, Part K, New types of persistent halogenated compounds ed. Paasivirta, J. pp. 237-287. Berlin: Springer.
Vetter, W. and Scherer, G. (1998) Variety, structures, GC properties, and persistence of compounds of technical toxaphene (CTTs). Chemosphere 37, 2525-2543.
Voldner, E.C. and Li, Y.F. (1993) Global usage of toxaphene. Chemosphere 27, 2073-2078.
Voldner, E.C. and Li, Y.F. (1995) Global usage of selected persistent organochlorines. Sci Total Environ 160, 201-210.
Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697-703.
Wong, S.H., Bell, S.G. and De Voss, J.J. (2017) P450 catalysed dehydrogenation. Pure Appl Chem 89, 841-852.
معلومات مُعتمدة: Colciencias (Departamento Administrativo de Ciencia, Tecnología e Innovación; Colombia); Departamento Administrativo de Ciencia, Tecnología e Innovación
فهرسة مساهمة: Keywords: aerobic biotransformation; camphor; co-metabolism; persistent organic pollutants; weathered toxaphene
المشرفين على المادة: 0 (Insecticides)
0 (RNA, Ribosomal, 16S)
0 (Soil)
4R7X1O2820 (Chlorine)
76-22-2 (Camphor)
8001-35-2 (Toxaphene)
تواريخ الأحداث: Date Created: 20201211 Date Completed: 20210707 Latest Revision: 20210707
رمز التحديث: 20231215
DOI: 10.1111/jam.14963
PMID: 33305511
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2672
DOI:10.1111/jam.14963