دورية أكاديمية

How specialized is a soil specialist? Early life history responses of a rare Eriogonum to site-level variation in volcanic soils.

التفاصيل البيبلوغرافية
العنوان: How specialized is a soil specialist? Early life history responses of a rare Eriogonum to site-level variation in volcanic soils.
المؤلفون: McClinton JD; Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV, USA., Parchman TL; Department of Biology, University of Nevada, Reno, Reno, NV, USA., Torrence KL; Bureau of Land Management, Black Rock Field Office, Winnemucca, NV, USA., Verburg PS; Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV, USA., Leger EA; Department of Biology, University of Nevada, Reno, Reno, NV, USA.
المصدر: American journal of botany [Am J Bot] 2020 Dec; Vol. 107 (12), pp. 1663-1676. Date of Electronic Publication: 2020 Dec 11.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0370467 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2197 (Electronic) Linking ISSN: 00029122 NLM ISO Abbreviation: Am J Bot Subsets: MEDLINE
أسماء مطبوعة: Publication: <2018-> : [Philadelphia, PA] : Wiley
Original Publication: Baltimore Md : Botanical Society Of America
مواضيع طبية MeSH: Eriogonum* , Soil*, Ecosystem ; Nevada ; Seedlings
مستخلص: Premise: Understanding edaphic specialization is crucial for conserving rare plants that may need relocation due to habitat loss. Focusing on Eriogonum crosbyae, a rare soil specialist in the Great Basin of the United States, we asked how site-level variation among volcanic soil outcrops affected plant growth and population distribution.
Methods: We measured emergence, survival, size, and biomass allocation of E. crosbyae seedlings planted in soils collected from 42 outcrops of actual and potential habitat. We also measured phenotypic variation in the wild, documented abiotic and biotic components of E. crosbyae habitat, re-surveyed Nevada populations, and evaluated occupancy changes over time.
Results: Plants responded plastically to edaphic variation, growing larger and allocating relatively more to aboveground tissues in soils with greater nutrient availability and growing smaller in soils higher in copper in the field and the greenhouse. However, the chemical and physical soil properties we measured did not predict site occupancy, nor was plant phenotype in the greenhouse different when plants were grown in soils from sites with different occupation status. We observed occupation status reversals at five locations.
Conclusions: Eriogonum crosbyae performed well in soils formed on hydrothermally altered rocks that are inhospitable to many other plants. Extirpation/colonization events observed were consistent with metapopulation dynamics, which may partially explain the patchy distribution of E. crosbyae among outcrops of potential habitat. While soil properties did not predict site occupancy, early life stages showed sensitivity to soil variation, indicating that seedling dynamics may be important to consider for the conservation of this soil specialist.
(© 2020 Botanical Society of America.)
References: Allen, D. M. 1971. Mean square error of prediction as a criterion for selecting variables. Technometrics 13: 469-475.
Antonovics, J. 1971. The effects of a heterogeneous environment on the genetics of natural populations: the realization that environments differ has had a profound effect on our views of the origin and role of genetic variability in populations. American Scientist 59: 593-599.
Aragón, C. F., A. Escudero, and F. Valladares. 2008. Stress-induced dynamic adjustments of reproduction differentially affect fitness components of a semi-arid plant. Journal of Ecology 96: 222-229.
Astegiano, J., P. R. Guimarães Jr, P.-O. Cheptou, M. M. Vidal, C. Y. Mandai, L. Ashworth, and F. Massol. 2015. Persistence of plants and pollinators in the face of habitat loss: insights from trait-based metacommunity models. In G. Woodward and D. A. Bohan [eds.], Advances in ecological research, vol. 53, Ecosystem services: from biodiversity to society, part 1, 201-257. Amsterdam, Netherlands, Elsevier.
Barker, A. V., and D. J. Pilbeam. 2015. Handbook of plant nutrition. CRC Press, Boca Raton, FL, USA.
Baskin, J. M., and C. C. Baskin. 1988. Endemism in rock outcrop plant communities of unglaciated eastern United States: an evaluation of the roles of the edaphic, genetic and light factors. Journal of Biogeography 15: 829-840.
Baythavong, B. S. 2011. Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments. American Naturalist 178: 75-87.
Bernardo, H. L., M. A. Albrecht, and T. M. Knight. 2016. Increased drought frequency alters the optimal management strategy of an endangered plant. Biological Conservation 203: 243-251.
Biesmeijer, J. C., S. P. Roberts, M. Reemer, R. Ohlemüller, M. Edwards, T. Peeters, A. Schaffers, et al. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351-354.
Billings, W. D. 1950. Vegetation and plant growth as affected by chemically altered rocks in the western Great Basin. Ecology 31: 62-74.
Binford, G. D., A. Blackmer, and M. Cerrato. 1992. Relationships between corn yields and soil nitrate in late spring. Agronomy Journal 84: 53-59.
Boisson, S., M.-P. Faucon, S. Le Stradic, B. Lange, N. Verbruggen, O. Garin, A. Tshomba Wetshy, et al. 2017. Specialized edaphic niches of threatened copper endemic plant species in the D.R. Congo: implications for ex situ conservation. Plant and Soil 413: 261-273.
Brady, K. U., A. R. Kruckeberg, and H. D. Bradshaw. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology Evolution and Systematics 36: 243-266.
Breiman, L. 2001. Random forests. Machine Learning 45: 5-32.
Brooks, R. R. 1979. Advances in botanical methods of prospecting for minerals. Part II-Advances in biogeochemical methods of prospecting. In P. J. Hood [ed.], Geophysics and geochemistry in the search for metallic ores. Geological Survey of Canada, Economic Geology Report 31, 397-410.
Brooks, R. R. 1987. Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland, OR, USA.
Cacho, N. I., and S. Y. Strauss. 2014. Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proceedings of the National Academy of Sciences, USA 111: 15132-15137.
Cairney, J. W. G., and A. A. Meharg. 2003. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. European Journal of Soil Science 54: 735-740.
Chen, J., Y. Li, Y. Yang, and H. Sun. 2017. How cushion communities are maintained in alpine ecosystems: A review and case study on alpine cushion plant reproduction. Plant Diversity 39: 221-228.
Colles, A., L. H. Liow, and A. Prinzing. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecology Letters 12: 849-863.
Corlett, R. T., and K. W. Tomlinson. 2020. Climate change and edaphic specialists: irresistible force meets immovable object? Trends in Ecology & Evolution 35: 367-376.
Cowling, R. M., R. L. Pressey, A. T. Lombard, P. G. Desmet, and A. G. Ellis. 1999. From representation to persistence: requirements for a sustainable system of conservation areas in the species-rich mediterranean-climate desert of southern Africa. Diversity Distributions 5: 51-71.
Dakora, F. D., and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. In J. J. Adi-Gyamfi [ed.], Food security in nutrient-stressed environments expoliting plants’ genetic capabilities, 201-213. Kluwer, Dordrecht, Netherlands.
Damschen, E. I., S. Harrison, D. D. Ackerly, B. M. Fernandez-Going, and B. L. Anacker. 2012. Endemic plant communities on special soils: early victims or hardy survivors of climate change? Journal of Ecology 100: 1122-1130.
Delong, M. K., and D. J. Gibson. 2012. What determines “suitable habitat” for metapopulation studies? An analysis of environmental gradients and species assemblages in xeric forest openings. American Journal of Botany 99: 46-54.
DeLucia, E. H., W. H. Schlesinger, and W. D. Billings. 1988. Water relations and the maintenance of sierran conifers on hydrothermally altered rock. Ecology 69: 304-311.
DeLucia, E. H., W. H. Schlesinger, and W. Billings. 1989. Edaphic limitations to growth and photosynthesis in Sierran and Great Basin vegetation. Oecologia 78: 184-190.
Dent, D. H., and D. F. R. P. Burslem. 2009. Performance trade-offs driven by morphological plasticity contribute to habitat specialization of Bornean tree species. Biotropica 41: 424-434.
Denton, M. F. 1979. Factors contributing to evolutionary divergence and endemism in Sedum section Gormania (Crassulaceae). Taxon 28: 149-155.
Dunwiddie, P., K. Beck, and F. Caplow. 2001. Demographic studies of Eriogonum codium Reveal, Caplow & Beck (Polygonaceae) in Washington. In S. H. Reichard, P. W. Dunwiddie, J. G. Gamon, A. R. Kruckeberg, D. L. Salstrom [ed.], Conservation of Washington’s native plants and ecosystems, 60-70. Washington Native Plant Society, Seattle, WA, USA.
Ellis, A. G., and A. E. Weis. 2006. Coexistence and differentiation of ‘flowering stones’: the role of local adaptation to soil microenvironment. Journal of Ecology 94: 322-335.
Ellis, M. W., P. G. Wolf, S. Bardot, J. Walton, C. Rowe, S. Kulpa, and K. Mock. 2015. Further examination of the geographic range of Eriogonum corymbosum var. nilesii (Polygonaceae, Eriogoneae). Phytotaxa 203: 279-286.
Escudero, A., S. Palacio, F. T. Maestre, and A. L. Luzuriaga. 2015. Plant life on gypsum: a review of its multiple facets. Biological Reviews 90: 1-18.
Falcon, M. F., R. L. Fox, and E. E. Trujillo. 1984. Interactions of soil pH, nutrients and moisture on phytophthora root rot of avocado. Plant Soil 81: 165-176.
Faucon, M.-P. 2010. Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecology and Evolution 143: 5-18.
Flora of North America Editorial Committee. 2005. Magnoliophyta: Caryophyllidae: Caryophyllales, Polygonales, and Plumbaginales., Flora of North America North of Mexico 5: 656. Oxford University Press, New York, USA.
Gao, Y., B. Ai, H. Kong, M. Kang, and H. Huang. 2015. Geographical pattern of isolation and diversification in karst habitat islands: a case study in the Primulina eburnea complex. Journal of Biogeography 42: 2131-2144.
García-Fernández, A., J. M. Iriondo, B. De Haro Reyes, and A. Escudero. 2018. Resistance of an edaphic-island specialist to anthropogenic-driven fragmentation. AoB Plants 10: plx072.
Gemma, J. N., R. E. Koske, and M. Habte. 2002. Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. American Journal of Botany 89: 337-345.
Givnish, T. J. 2010. Ecology of plant speciation. Taxon 59: 1326-1366.
Grady, B. R., and J. L. Reveal. 2011. New combinations and a new species of Eriogonum (Polygonaceae: Eriogonoideae) from the Great Basin Desert, United States. Phytotaxa 24: 33-38.
Harrison, S., E. Damschen, and B. M. Going 2009. Climate gradients, climate change, and special edaphic floras. Northeastern Naturalist 16: 121-130.
Harrison, S., J. H. Viers, J. H. Thorne, and J. B. Grace. 2008. Favorable environments and the persistence of naturally rare species. Conservation Letters 1: 65-74.
Hasannejad, S., S. J. Zad, H. M. Alizade, and H. Rahymian. 2006. The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination. Communications in Agricultural and Applied Biological Sciences 71: 1295-1299.
Ishwaran, H., and U. Kogalur. 2019. Fast unified random forests for survival, regression, and classification (RF-SRC). R package version 2. Website: https://cran.r-project.org/package=randomForestSRC.
Ishwaran, H., U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. 2008. Random survival forests. Annals of Applied Statistics 2: 841-860.
Kabata-Pendias, A. 2010. Trace elements in soils and plants, 4th ed. CRC Press, Boca Raton, FL, USA.
Kaye, T. M., W. Messinger, S. Massey, S. Kephart, and D. Flanagan. 1990. Eriogonum crosbyae and E. prociduum inventory, reproduction, and taxonomic assessment. Challenge Cost-share program: Bureau of Land Management and Oregon Department of Agriculture, Project 89-6. Bureau of Land Management, Lakeview District, OR, USA.
Kazakou, E., P. G. Dimitrakopoulos, A. J. M. Baker, R. D. Reeves, and A. Y. Troumbis. 2008. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biological Reviews 83: 495-508.
Keener, C. S. 1983. Distribution and biohistory of the endemic flora of the mid-Appalachian shale barrens. Botanical Review 49: 65-115.
Kelso, S., N. W. Bower, K. E. Heckmann, P. M. Beardsley, and D. G. Greve. 2003. Geobotany of the Niobrara Chalk Barrens in Colorado: a study of edaphic endemism. Western North American Naturalist 63: 299-313.
Kempton, E. A. 2012. Systematics of Eriogonoideae s. s. (Polygonaceae). Systematic Botany 37: 723-737.
Khurana, E., and J. S. Singh. 2001. Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental Conservation 28: 39-52.
Kruckeberg, A. R. 1951. Intraspecificvariability in the response of certain native plant species to serpentine soil. American Journal of Botany 38: 408-419.
Kruckeberg, A. R. 1969. Soil diversity and the distribution of plants, with examples from western North America. Madroño 20: 129-154.
Kruckeberg, A. R. 1986. An essay: the stimulus of unusual geologies for plant speciation. Systematic Botany 11: 455-463.
Lazarus, B. E., J. H. Richards, V. P. Claassen, R. E. O’Dell, and M. A. Ferrell. 2011. Species specific plant-soil interactions influence plant distribution on serpentine soils. Plant Soil 342: 327-344.
Libohova, Z., C. Seybold, D. Wysocki, S. Wills, P. Schoeneberger, C. Williams, D. Lindbo, et al. 2018. Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National Cooperative Soil Survey Characterization Database. Journal of Soil and Water Conservation 73: 411-421.
Madawala Weerasinghe, S., C. Chandrasekara, G. Seneviratne, C. V. S. Gunatilleke, and I. A. U. N. Gunatilleke. 2010. Growth variations of edaphic specialist species in a reciprocal pot experiment in Sri Lanka. Journal of the National Science Foundation of Sri Lanka 38: 171-179.
Maestri, E., M. Marmiroli, G. Visioli, and N. Marmiroli. 2010. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental and Experimental Botany 68: 1-13.
Marschner, H. 2011. Marschner’s mineral nutrition of higher plants. Elsevier Science & Technology, San Diego, CA, USA.
Maschinski, J., and K. E. Haskins. 2012. Plant reintroduction in a changing climate: promises and perils. Island Press, Washington, D.C., USA.
McClinton, J., T. Parchman, K. Torrence, P. Verburg, and E. Leger. 2020. Data from: How specialized is a soil specialist? Early life history responses of a rare Eriogonum to site-level variation in volcanic soils. Dryad Digital Repository. https://doi.org/10.5061/dryad.23h5195.
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28: 495-516.
Millot, G. 2013. Geology of clays: weathering, sedimentology, geochemistry. Springer Science & Business Media, Berlin, Germany.
Moore, K. A., and S. C. Elmendorf. 2011. Plant competition and facilitation in systems with strong environmental gradients. In S. Harrison, [ed.], Serpentine: The evolution and ecology of a model system, 223-236. University of California Press, Berkeley, CA, USA.
Morefield, J. D. 2003. Conservation status report for Eriogonum crosbyae reveal (Polygonaceae), the Crosby buckwheat, in Nevada. U.S. Fish and Wildlife Service, Nevada State Office, Reno, NV, USA.
Neel, M. C., J. Ross-Ibarra, and N. C. Ellstrand. 2001. Implications of mating patterns for conservation of the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae). American Journal of Botany 88: 1214-1222.
O’Dell, R. E., and V. P. Claassen. 2011. Restoration and revegetation of harsh soils. In S. Harrison [ed.], Serpentine: the evolution and ecology of a model system, 383-413. University of California Press, Berkeley, CA, USA.
Orr, R., and P. N. Nelson. 2018. Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Applied Soil Ecology 132: 20-33.
Pacifici, M., W. B. Foden, P. Visconti, J. E. M. Watson, S. H. M. Butchart, K. M. Kovacs, B. R. Scheffers, et al. 2015. Assessing species vulnerability to climate change. Nature Climate Change 5: 215-224.
Rajakaruna, N. 2004. The edaphic factor in the origin of plant species. International Geology Review 46: 471-478.
Rajakaruna, N. 2018. Lessons on evolution from the study of edaphic specialization. Botanical Review 84: 39-78.
Rajakaruna, N. 2014. Synthesis and future directions: What have harsh environments taught us about ecology, evolution, conservation and restoration?InR. S. Boyd and T. B. Harris [ed.], Plant ecology and evolution in harsh environments, 393-409. Nova Science Publishers, NY, NY, USA.
Rajakaruna, N., B. Gary, and J. Whitton. 2003. Adaptive differentiation in response to water stress by edaphic races of Lasthenia californica (Asteraceae). International Journal of Plant Sciences 164: 371-376.
Reveal, J. L. 1985. Annotated key to Eriogonum (Polygonaceae) of Nevada. Great Basin Naturalist 45: 493-519.
Riba, M., M. Mayol, B. E. Giles, O. Ronce, E. Imbert, M. Van Der Velde, S. Chauvet, et al. 2009. Darwin’s wind hypothesis: Does it work for plant dispersal in fragmented habitats? New Phytologist 183: 667-677.
Riley, L., M. E. McGlaughlin, and K. Helenurm. 2018. Limited genetic variability in native buckwheats (Eriogonum: Polygonaceae) on San Clemente Island. Western North American Naturalist 78: 722-738, 717.
Safford, H. D., J. H. Viers, and S. P. Harrison. 2005. Serpentine endemism in the California flora: a database of serpentine affinity. Madroño 52: 222-257.
Sánchez, A. M., P. Alonso-Valiente, M. J. Albert, and A. Escudero. 2017. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phenotypic plasticity. Annals of Botany 120: 135-146.
Santamaría, S., A. M. Sánchez, J. López-Angulo, C. Ornosa, I. Mola, and A. Escudero. 2018. Landscape effects on pollination networks in Mediterranean gypsum islands. Plant Biology 20: 184-194.
Schenk, J. J. 2013. Evolution of limited seed dispersal ability on gypsum islands. American Journal of Botany 100: 1811-1822.
Seddon, P. J. 2010. From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restoration Ecology 18: 796-802.
Sianta, S. A., and K. M. Kay. 2019. Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. American Journal of Botany 106: 690-703.
Spasojevic, M. J., E. I. Damschen, and S. Harrison. 2014. Patterns of seed dispersal syndromes on serpentine soils: examining the roles of habitat patchiness, soil infertility and correlated functional traits. Plant Ecology & Diversity 7: 401-410.
Thompson, J. N. 2005. The geographic mosaic of coevolution. University of Chicago Press, Chicago, IL, USA.
Vittoz, P., and R. Engler. 2007. Seed dispersal distances: a typology based on dispersal modes and plant traits. Botanica Helvetica 117: 109-124.
Walck, J. L., J. M. Baskin, and C. C. Baskin. 1999. Relative competitive abilities and growth characteristics of a narrowly endemic and a geographically widespread Solidago species (Asteraceae). American Journal of Botany 86: 820-828.
Wang, J., H. Wang, Y. Cao, Z. Bai, and Q. Qin. 2016. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area. Scientific Reports 6: 22058.
Wright, J., and M. Stanton. 2011. Local adaptation in heterogeneous landscapes: reciprocal transplant experiments and beyond. In S. Harrison [ed.], Serpentine: the evolution and ecology of a model system, 155-179. University of California Press, Berkeley, CA, USA.
Wright, J. W., M. L. Stanton, and R. Scherson. 2006. Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evolutionary Ecology Research 8: 1-21.
Yost, J. M., T. Barry, K. M. Kay, and N. Rajakaruna. 2012. Edaphic adaptation maintains the coexistence of two cryptic species on serpentine soils. American Journal of Botany 99: 890-897.
You, M. P., K. Rensing, M. Renton, and M. J. Barbetti. 2018. Critical factors driving aphanomyces damping-off and root disease in clover revealed and explained using linear and generalized linear models and boosted regression trees. Plant Pathology 67: 1374-1387.
فهرسة مساهمة: Keywords: Eriogonum crosbyae; Great Basin; Polygonaceae; metapopulation; plasticity; rare plant; soil preference; soil properties
المشرفين على المادة: 0 (Soil)
تواريخ الأحداث: Date Created: 20201211 Date Completed: 20210128 Latest Revision: 20210128
رمز التحديث: 20240628
DOI: 10.1002/ajb2.1582
PMID: 33306244
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-2197
DOI:10.1002/ajb2.1582