دورية أكاديمية

Microglial G i -dependent dynamics regulate brain network hyperexcitability.

التفاصيل البيبلوغرافية
العنوان: Microglial G i -dependent dynamics regulate brain network hyperexcitability.
المؤلفون: Merlini M; Gladstone Institutes, San Francisco, CA, USA., Rafalski VA; Gladstone Institutes, San Francisco, CA, USA., Ma K; Gladstone Institutes, San Francisco, CA, USA., Kim KY; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA., Bushong EA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA., Rios Coronado PE; Gladstone Institutes, San Francisco, CA, USA., Yan Z; Gladstone Institutes, San Francisco, CA, USA., Mendiola AS; Gladstone Institutes, San Francisco, CA, USA., Sozmen EG; Gladstone Institutes, San Francisco, CA, USA.; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA., Ryu JK; Gladstone Institutes, San Francisco, CA, USA.; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA., Haberl MG; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA., Madany M; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA., Sampson DN; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA., Petersen MA; Gladstone Institutes, San Francisco, CA, USA.; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA., Bardehle S; Gladstone Institutes, San Francisco, CA, USA., Tognatta R; Gladstone Institutes, San Francisco, CA, USA., Dean T Jr; Gladstone Institutes, San Francisco, CA, USA.; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA., Acevedo RM; Gladstone Institutes, San Francisco, CA, USA., Cabriga B; Gladstone Institutes, San Francisco, CA, USA., Thomas R; Gladstone Institutes, San Francisco, CA, USA., Coughlin SR; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA., Ellisman MH; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA., Palop JJ; Gladstone Institutes, San Francisco, CA, USA.; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA., Akassoglou K; Gladstone Institutes, San Francisco, CA, USA. kakassoglou@gladstone.ucsf.edu.; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA. kakassoglou@gladstone.ucsf.edu.
المصدر: Nature neuroscience [Nat Neurosci] 2021 Jan; Vol. 24 (1), pp. 19-23. Date of Electronic Publication: 2020 Dec 14.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 9809671 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1726 (Electronic) Linking ISSN: 10976256 NLM ISO Abbreviation: Nat Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002->: New York, NY : Nature Publishing Group
Original Publication: New York, NY : Nature America Inc., c1998-
مواضيع طبية MeSH: G-Protein-Coupled Receptor Kinase 1/*physiology , Microglia/*physiology , Nerve Net/*physiology, Animals ; Calcium Signaling ; Cell Movement ; Convulsants ; Electroencephalography ; Immunologic Surveillance ; Mice ; Microglia/enzymology ; Microglia/ultrastructure ; Nervous System Diseases/physiopathology ; Nervous System Physiological Phenomena ; Pilocarpine ; Seizures/physiopathology ; Signal Transduction ; rho GTP-Binding Proteins/metabolism
مستخلص: Microglial surveillance is a key feature of brain physiology and disease. Here, we found that G i -dependent microglial dynamics prevent neuronal network hyperexcitability. By generating Mg PTX mice to genetically inhibit G i in microglia, we show that sustained reduction of microglia brain surveillance and directed process motility induced spontaneous seizures and increased hypersynchrony after physiologically evoked neuronal activity in awake adult mice. Thus, G i -dependent microglia dynamics may prevent hyperexcitability in neurological diseases.
التعليقات: Comment in: Epilepsy Curr. 2021 Apr 5;:15357597211004568. (PMID: 33820468)
References: Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005). (PMID: 15895084)
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005). (PMID: 15831717)
Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227 (2012). (PMID: 231876273514498)
Condello, C., Yuan, P., Schain, A. & Grutzendler, J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 6, 6176 (2015). (PMID: 256302534311408)
Madry, C. et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K + channel THIK-1. Neuron 97, 299–312.e6 (2018). (PMID: 292905525783715)
Haynes, S. E. et al. The P2Y 12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006). (PMID: 17115040)
Regard, J. B. et al. Probing cell type-specific functions of G i in vivo identifies GPCR regulators of insulin secretion. J. Clin. Invest. 117, 4034–4043 (2007). (PMID: 179922562066199)
Bernier, L. P. et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep. 27, 2895–2908.e4 (2019). (PMID: 31167136)
Eyo, U. B., Murugan, M. & Wu, L. J. Microglia–neuron communication in epilepsy. Glia 65, 5–18 (2017). (PMID: 27189853)
Haberl, M. G., et al. CDeep3M-Preview: online segmentation using the deep neural network model zoo. Preprint at bioRxiv https://doi.org/10.1101/2020.03.26.010660 (2020).
Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998). (PMID: 9438836)
York, E. M., Bernier, L. P. & MacVicar, B. A. Microglial modulation of neuronal activity in the healthy brain. Dev. Neurobiol. 78, 593–603 (2018). (PMID: 29271125)
Li, Y., Du, X. F., Liu, C. S., Wen, Z. L. & Du, J. L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189–1202 (2012). (PMID: 23201120)
Cserep, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020). (PMID: 31831638)
Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019). (PMID: 316364496858573)
Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019). (PMID: 316364516875777)
Iaccarino, H. F. et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235 (2016). (PMID: 279290045656389)
Szalay, G. et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat. Commun. 7, 11499 (2016). (PMID: 271397764857403)
Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012). (PMID: 225414393375906)
Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020). (PMID: 32999463)
Liu, X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50, 317–333.e6 (2019). (PMID: 306836206759085)
Arnold, T. D. et al. Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor dysfunction. J. Exp. Med. 216, 900–915 (2019). (PMID: 308464826446869)
Zhao, X. F. et al. Targeting microglia using Cx3cr1-Cre Lines: revisiting the specificity. eNeuro https://doi.org/10.1523/ENEURO.0114-19.2019 (2019).
Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013). (PMID: 243602804033691)
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010). (PMID: 20023653)
Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013). (PMID: 23273845)
Gyoneva, S. et al. Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62, 1345–1360 (2014). (PMID: 248071894408916)
Gunner, G. et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat. Neurosci. 22, 1075–1088 (2019). (PMID: 312093796596419)
Xiao, F., Xu, J. M. & Jiang, X. H. CX3 chemokine receptor 1 deficiency leads to reduced dendritic complexity and delayed maturation of newborn neurons in the adult mouse hippocampus. Neural Regen. Res. 10, 772–777 (2015). (PMID: 261099524468769)
Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016). (PMID: 48463794846379)
Noguchi, J. et al. In vivo two-photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice. J. Physiol. 589, 2447–2457 (2011). (PMID: 214868113115818)
Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011). (PMID: 214355623086675)
Merlini, M. et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in Alzheimer’s disease. Neuron 101, 1099–1108 (2019). (PMID: 307371316602536)
Rocamora, N., Welker, E., Pascual, M. & Soriano, E. Upregulation of BDNF mRNA expression in the barrel cortex of adult mice after sensory stimulation. J. Neurosci. 16, 4411–4419 (1996). (PMID: 86992526578867)
Schmidt, G. et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387, 725–729 (1997). (PMID: 9192900)
Muller, C. J., Groticke, I., Hoffmann, K., Schughart, K. & Loscher, W. Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice. Genes Brain Behav. 8, 481–492 (2009). (PMID: 19493016)
Moss, J. et al. Fine processes of Nestin–GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature. Proc. Natl Acad. Sci. USA 113, E2536–E2545 (2016). (PMID: 27091993)
Wilke, S. A. et al. Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J. Neurosci. 33, 507–522 (2013). (PMID: 233039313756657)
Berger, D. R., Seung, H. S. & Lichtman, J. W. VAST (volume annotation and segmentation tool): efficient manual and semi-automatic labeling of large 3D image stacks. Front. Neural Circuits 12, 88 (2018). (PMID: 303862166198149)
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). (PMID: 8742726)
Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020). (PMID: 322845947523413)
Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 (2018). (PMID: 303233436317891)
Jang, M. J. & Nam, Y. NeuroCa: integrated framework for systematic analysis of spatiotemporal neuronal activity patterns from large-scale optical recording data. Neurophotonics 2, 035003 (2015). (PMID: 262299734516777)
معلومات مُعتمدة: K99 AG062776 United States AG NIA NIH HHS; R35 NS097976 United States NS NINDS NIH HHS; RF1 AG064926 United States AG NIA NIH HHS; TL1 TR001871 United States TR NCATS NIH HHS; F32 NS096920 United States NS NINDS NIH HHS; R01 AG047313 United States AG NIA NIH HHS; U24 NS120055 United States NS NINDS NIH HHS; C06 RR018928 United States RR NCRR NIH HHS; RF1 AG062234 United States AG NIA NIH HHS; T32 AI007334 United States AI NIAID NIH HHS; K02 NS110973 United States NS NINDS NIH HHS; R24 GM137200 United States GM NIGMS NIH HHS; S10 OD021784 United States OD NIH HHS
المشرفين على المادة: 0 (Convulsants)
01MI4Q9DI3 (Pilocarpine)
EC 2.7.11.14 (G-Protein-Coupled Receptor Kinase 1)
EC 2.7.11.14 (Grk1 protein, mouse)
EC 3.6.5.2 (rho GTP-Binding Proteins)
تواريخ الأحداث: Date Created: 20201215 Date Completed: 20210308 Latest Revision: 20220421
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8118167
DOI: 10.1038/s41593-020-00756-7
PMID: 33318667
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1726
DOI:10.1038/s41593-020-00756-7