دورية أكاديمية

Effects of postfire climate and seed availability on postfire conifer regeneration.

التفاصيل البيبلوغرافية
العنوان: Effects of postfire climate and seed availability on postfire conifer regeneration.
المؤلفون: Stewart JAE; Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA.; Department of Environmental Science and Policy, UC Davis, Davis, California, 95616, USA., van Mantgem PJ; Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA., Young DJN; Department of Plant Sciences, UC Davis, Davis, California, 95616, USA., Shive KL; Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA., Preisler HK; Pacific Southwest Research Station, U.S. Forest Service, Albany, California, 94710, USA., Das AJ; Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California, 93271, USA., Stephenson NL; Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California, 93271, USA., Keeley JE; Western Ecological Research Center, U.S. Geological Survey, Three Rivers, California, 93271, USA., Safford HD; Department of Environmental Science and Policy, UC Davis, Davis, California, 95616, USA.; Pacific Southwest Region, U.S. Forest Service, Vallejo, California, 94592, USA., Wright MC; Western Ecological Research Center, U.S. Geological Survey, Arcata, California, 95521, USA., Welch KR; California Department of Forestry and Fire Protection, Sacramento, California, 94244, USA., Thorne JH; Department of Environmental Science and Policy, UC Davis, Davis, California, 95616, USA.
المصدر: Ecological applications : a publication of the Ecological Society of America [Ecol Appl] 2021 Apr; Vol. 31 (3), pp. e02280. Date of Electronic Publication: 2021 Feb 16.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 9889808 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1051-0761 (Print) Linking ISSN: 10510761 NLM ISO Abbreviation: Ecol Appl Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, D.C. : Ecological Society of America
Original Publication: Tempe, AZ : The Society, 1991-
مواضيع طبية MeSH: Fires* , Tracheophyta* , Wildfires*, Climate ; Ecosystem ; Forests ; Seeds ; Trees
مستخلص: Large, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform postfire management in low elevation forests of California, USA, we collected 5-yr postfire recovery data from 1,234 study plots in 19 wildfires that burned from 2004-2012 and 18 yrs of seed production data from 216 seed fall traps (1999-2017). We used these data in conjunction with spatially extensive climate, topography, forest composition, and burn severity surfaces to construct taxon-specific, spatially explicit models of conifer regeneration that incorporate climate conditions and seed availability during postfire recovery windows. We found that after accounting for other predictors both postfire and historical precipitation were strong predictors of regeneration, suggesting that both direct effects of postfire moisture conditions and biological inertia from historical climate may play a role in regeneration. Alternatively, postfire regeneration may simply be driven by postfire climate and apparent relationships with historical climate could be spurious. The estimated sensitivity of regeneration to postfire seed availability was strongest in firs and all conifers combined and weaker in pines. Seed production exhibited high temporal variability with seed production varying by over two orders of magnitude among years. Our models indicate that during droughts postfire conifer regeneration declines most substantially in low-to-moderate elevation forests. These findings enhance our mechanistic understanding of forecasted and historically documented shifts in the distribution of trees.
(© 2020 by the Ecological Society of America.)
References: Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences USA 113:11770-11775.
Allen, C. D., M. Savage, D. A. Falk, K. F. Suckling, T. W. Swetnam, T. Schulke, P. B. Stacey, P. Morgan, M. Hoffman, and J. T. Klingel. 2002. Ecological restoration of southwestern ponderosa pine ecosystems: a broad perspective. Ecological Applications 12:1418-1433.
Attiwill, P., and D. Binkley. 2013. Exploring the mega-fire reality: a ‘forest ecology and management’ conference. Forest Ecology and Management 294:1-3.
Barnett, J. P. 1999. Guidelines for estimating cone and seed yields of southern pines. Pages 31-35 in M. Born, M. Stine, compl. Proceedings of the 25th Biennial Southem Forest Tree Improvement Conference. 2014 July 11-14. New Orleans, Louisiana, USA.
Biondi, F., A. Gershunov, and D. R. Cayan. 2001. North Pacific decadal climate variability since 1661. Journal of Climate 14:5-10.
Chambers, M. E., P. J. Fornwalt, S. L. Malone, and M. A. Battaglia. 2016. Patterns of conifer regeneration following high severity wildfire in ponderosa pine-dominated forests of the Colorado Front Range. Forest Ecology and Management 378:57-67.
Chen, D., M. A. Cane, A. Kaplan, S. E. Zebian, and D. Huang. 2004. Predictability of El Nino in the past 148 years. Nature 428:733-736.
Coop, J. D., S. A. Parks, S. R. McClernan, and L. M. Holsinger. 2016. Influences of prior wildfires on vegetation response to subsequent fire in a reburned southwestern landscape. Ecological Applications 26:346-354.
Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33:140-158.
Das, A. J., N. L. Stephenson, and K. P. Davis. 2016. Why do trees die? Characterizing the drivers of background tree mortality. Ecology 97:2616-2627.
Davis, K. T., S. Z. Dobrowski, P. E. Higuera, Z. A. Holden, T. T. Veblen, M. T. Rother, S. A. Parks, A. Sala, and M. P. Maneta. 2019. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of Sciences USA 116:6193-6198.
Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz. 2014. Large wildfire trends in the western United States, 1984-2011. Geophysical Research Letters 41:2928-2933.
Dobrowski, S. Z. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17:1022-1035.
Dobrowski, S. Z., A. K. Swanson, J. T. Abatzoglou, Z. A. Holden, H. D. Safford, M. K. Schwartz, and D. G. Gavin. 2015. Forest structure and species traits mediate projected recruitment declines in western US tree species. Global Ecology and Biogeography 24:917-927.
Falk, D. A. 2013. Are Madrean ecosystems approaching tipping points? Anticipating interactions of landscape disturbance and climate change. Merging science and management in a rapidly changing world: Biodiversity and management of the Madrean Archipelago III.; 2012 May 1-5; Tucson, AZ. Pages 40-47G. J. Gottfried, P. F. Ffolliott, B. S. Gebow, L. G. Eskew, and L. C. Collins, editors. Proceedings. RMRS-P-67. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Fernández-Guisuraga, J. M., E. Sanz-Ablanedo, S. Suárez-Seoane, and L. Calvo. 2018. Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: Opportunities and challenges. Sensors 18:586.
Flint, L. E., A. L. Flint, J. H. Thorne, and R. Boynton. 2013. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecological Processes 2:25.
Franco, A. M. A., J. K. Hill, C. Kitschke, Y. C. Collingham, D. B. Roy, R. Fox, B. Huntley, and C. D. Thomas. 2006. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology 12:1545-1553.
Frock, C. F., and M. G. Turner. 2018. Microhabitat conditions and landscape pattern explain nocturnal rodent activity, but not seed removal, in burned and unburned lodgepole pine forests. Landscape Ecology 33:1895-1909.
Goforth, B. R., and R. A. Minnich. 2008. Densification, stand-replacement wildfire, and extirpation of mixed conifer forest in Cuyamaca Rancho State Park, southern California. Forest Ecology and Management 256:36-45.
Gray, A. N., H. S. J. Zald, R. A. Kern, and M. North. 2005. Stand conditions associated with tree regeneration in Sierran mixed-conifer forests. Forest Science 51:198-210.
Greene, D. F., and E. A. Johnson. 1994. Estimating the mean annual seed production of trees. Ecology 75:642.
Haire, S. L., and K. McGarigal. 2010. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landscape Ecology 25:1055-1069.
Harvey, B. J., D. C. Donato, and M. G. Turner. 2016. High and dry: Post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches. Global Ecology and Biogeography 25:655-669.
Hurteau, M. D., J. B. Bradford, P. Z. Fulé, A. H. Taylor, and K. L. Martin. 2014. Climate change, fire management, and ecological services in the southwestern US. Forest Ecology and Management 327:280-289.
Keeley, J. E., and T. J. Brennan. 2012. Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia 169:1043-1052.
Keeley, J. E., and H. D. Safford. 2016. Fire as an ecosystem process. Pages 27-45 in H. Mooney, and E. Zavaleta, editors. Ecosystems of California. University of California Press, Berkeley, California, USA.
Kelly, D., and V. L. Sork. 2002. Mast seeding in perennial plants: why, how, where? Annual Review of Ecology and Systematics 33:427-447.
Kemp, K. B., P. E. Higuera, and P. Morgan. 2016. Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies. Landscape Ecology 31:619-636.
Kitzberger, T., D. A. Falk, A. L. Westerling, and T. W. Swetnam. 2017. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12:e0188486.
Larson, A. J., B. R. Travis, C. C. Alina, S. A. Parks, and M. S. Dietz. 2013. Latent resilience in ponderosa pine forest: Effects of resumed frequent fire. Ecological Applications 23:1243-1249.
Lauvaux, C. A., C. N. Skinner, and A. H. Taylor. 2016. High severity fire and mixed conifer forest-chaparral dynamics in the southern Cascade Range, USA. Forest Ecology and Management 363:74-85.
Mallek, C., H. Safford, J. H. Viers, and J. D. Miller. 2013. Modern Departures in fire severity and area vary by forest type. Ecosphere 4:1-28.
McGill, R., J. W. Tukey, and W. A. Larsen. 1978. Variations of box plots accessed. American Statistician 32:12-16.
McWethy, D. B. et al. 2019. Rethinking resilience to wildfire. Nature Sustainability 2:797-804.
Michez, A., H. Piégay, J. Lisein, H. Claessens, and P. Lejeune. 2016. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental Monitoring and Assessment 188:1-19.
Millar, C. I., and N. L. Stephenson. 2015. Temperate forest health in an era of emerging megadisturbance. Science 349:823-826.
Miller, J. D., E. E. Knapp, C. H. Key, C. N. Skinner, C. J. Isbell, R. M. Creasy, and J. W. Sherlock. 2009a. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment 113:645-656.
Miller, J. D., H. D. Safford, M. Crimmins, and A. E. Thode. 2009b. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 12:16-32.
Miller, J. D., and A. E. Thode. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109:66-80.
Moyes, A. B., C. Castanha, M. J. Germino, and L. M. Kueppers. 2013. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia 171:271-282.
Nagel, T. A., and A. H. Taylor. 2005. Fire and persistence of montane chaparral in mixed conifer forest landscapes in the northern Sierra Nevada, Lake Tahoe Basin, California, USA. Journal of the Torrey Botanical Society 132:442-457.
O’Connor, C. D., D. A. Falk, A. M. Lynch, and T. W. Swetnam. 2014. Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleño Mountains, Arizona, USA. Forest Ecology and Management 329:264-278.
Ohmann, J. L., M. J. Gregory, E. B. Henderson, and H. M. Roberts. 2011. Mapping gradients of community composition with nearest-neighbor imputation: extending plot data for landscape analysis. Journal of Vegetation Science 22:660-676.
Oliver, W. W., and K. L. Dolph. 1992. Mixed-conifer seedling growth varies in response to overstory release. Forest Ecology and Management 48:179-183.
Pausas, J. G., and J. E. Keeley. 2017. Epicormic Resprouting in fire-prone ecosystems. Trends in Plant Science 22:1008-1015.
Peters, V. S., E. Macdonald, and M. R. T. Dale. 2005. The interaction between masting and fire is key to white spruce regeneration. Ecology 86:1744-1750.
Puhlick, J. J., D. C. Laughlin, and M. M. Moore. 2012. Factors influencing ponderosa pine regeneration in the southwestern USA. Forest Ecology and Management 264:10-19.
Pya, N., and S. N. Wood. 2015. Shape constrained additive models. Statistics and Computing 25:543-559.
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rodman, K. C., T. T. Veblen, T. B. Chapman, M. T. Rother, A. P. Wion, and M. D. Redmond. 2019. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Ecological Applications 30:1-20.
Rother, M. T., and T. T. Veblen. 2016. Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range. Ecosphere 7:e01594.
Safford, H. D., and J. T. Stevens. 2017. Natural range of variation for yellow pine and mixed-conifer forests in the Sierra Nevada, southern Cascades, and Modoc and Inyo National Forests, California, USA, Gen. Tech. Rep. PSW-GTR-256. Page 229. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, California, USA.
Savage, M., J. N. Mast, and J. J. Feddema. 2013. Double whammy: high-severity fire and drought in ponderosa pine forests of the Southwest. Canadian Journal of Forest Research 43:570-583.
Seidl, R., T. A. Spies, D. L. Peterson, S. L. Stephens, and J. A. Hicke. 2016. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology 53:120-129.
Shive, K. L., H. K. Preisler, K. R. Welch, H. D. Safford, R. J. Butz, K. L. O’Hara, and S. L. Stephens. 2018. From the stand-scale to the landscape-scale: predicting the spatial patterns of forest regeneration after disturbance. Ecological Applications 28:1626-1639.
Stevens, J. T., B. M. Collins, J. D. Miller, M. P. North, and S. L. Stephens. 2017. Changing spatial patterns of stand-replacing fire in California conifer forests. Forest Ecology and Management 406:28-36.
Stevens-Rumann, C. S., K. B. Kemp, P. E. Higuera, B. J. Harvey, M. T. Rother, D. C. Donato, P. Morgan, and T. T. Veblen. 2018. Evidence for declining forest resilience to wildfires under climate change. Ecology Letters 21:243-252.
Stewart, J. A. E. et al. 2020, Post-fire conifer regeneration observations for National Forest land in California (2009-2017): U.S. Geological Survey data release. https://doi.org/10.5066/P9CWOGXV.
Tepley, A. J., J. R. Thompson, H. E. Epstein, and K. J. Anderson-Teixeira. 2017. Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Global Change Biology 23:4117-4132.
Thorne, J. H., R. M. Boynton, L. E. Flint, and A. L. Flint. 2015. The magnitude and spatial patterns of historical and future hydrologic change in California’s watersheds. Ecosphere 6:1-30.
Thorne, J. H., H. Choe, P. A. Stine, J. C. Chambers, A. Holguin, A. C. Kerr, and M. W. Schwartz. 2018. Climate change vulnerability assessment of forests in the Southwest USA. Climatic Change 148:387-402.
U.S. Geological Survey. 2018. U.S. Geological Survey, The National Map. http://nationalmap.gov/3dep_prodserv.html.
USDA Forest Service. 2016. FACTS-regional activities in the past 20 years. https://www.fs.usda.gov/main/r5/landmanagement/gis.
USDA Forest Service. 2018. Rapid assessment of vegetation condition after wildfire. https://www.fs.fed.us/postfirevegcondition.
Urza, A. K., and J. S. Sibold. 2017. Climate and seed availability initiate alternate post-fire trajectories in a lower subalpine forest. Journal of Vegetation Science 28:43-56.
Vander Wall, S. B. 2002. Masting in animal-dispersed pines facilitates seed dispersal. Ecology 83:3508-3516.
Voldoire, A. et al. 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics 40:2091-2121.
Wang, T., G. A. O’Neill, and S. N. Aitken. 2010. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecological Applications 20:153-163.
Watanabe, S. et al. 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4:845-872.
Welch, K. R., H. D. Safford, and T. P. Young. 2016. Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean-climate zone. Ecosphere 7:e01609.
Williams, A. P. et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3:292-297.
Wood, S. N. 2017. Generalized additive models: an introduction with R. Second edition. CRC Press, Boca Raton, Florida, USA.
Wright, B. R., A. F. Zuur, and G. C. K. Chan. 2014. Proximate causes and possible adaptive functions of mast seeding and barren flower shows in spinifex grasses (Triodia spp.) in arid regions of Australia. Rangeland Journal 36:297-308.
Young, D. J. N., C. M. Werner, K. R. Welch, T. P. Young, H. D. Safford, and A. M. Latimer. 2019. Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion. Ecology 100:e02571.
Young, T. P., E. P. Zefferman, K. J. Vaughn, and S. Fick. 2015. Initial success of native grasses is contingent on multiple interactions among exotic grass competition, temporal priority, rainfall and site effects. AoB PLANTS 7:1-9.
Zwolak, R., D. E. Pearson, Y. K. Ortega, and E. E. Crone. 2010. Fire and mice: Seed predation moderates fire’s influence on conifer recruitment. Ecology 91:1124-1131.
فهرسة مساهمة: Keywords: drought stress; ecosystem management; fire effects; postfire conifer regeneration; resilience; tree reproduction
تواريخ الأحداث: Date Created: 20201217 Date Completed: 20210426 Latest Revision: 20210426
رمز التحديث: 20240628
DOI: 10.1002/eap.2280
PMID: 33331069
قاعدة البيانات: MEDLINE
الوصف
تدمد:1051-0761
DOI:10.1002/eap.2280