دورية أكاديمية

Experimental nitrogen and phosphorus enrichment stimulates multiple trophic levels of algal and detrital-based food webs: a global meta-analysis from streams and rivers.

التفاصيل البيبلوغرافية
العنوان: Experimental nitrogen and phosphorus enrichment stimulates multiple trophic levels of algal and detrital-based food webs: a global meta-analysis from streams and rivers.
المؤلفون: Ardón M; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, U.S.A., Zeglin LH; Division of Biology, Kansas State University, Manhattan, KS, 66506, U.S.A., Utz RM; Falk School of Sustainability, Chatham University, Pittsburgh, PA, 15232, U.S.A., Cooper SD; Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California - Santa Barbara, Santa Barbara, CA, 93106, U.S.A., Dodds WK; Division of Biology, Kansas State University, Manhattan, KS, 66506, U.S.A., Bixby RJ; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, U.S.A., Burdett AS; River Bend Ecology, Wickliffe, VIC, 3379, Australia., Follstad Shah J; Environmental and Sustainability Studies Program/Department of Geography, University of Utah, Salt Lake City, UT, 84112, U.S.A., Griffiths NA; Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A., Harms TK; Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, U.S.A., Johnson SL; Pacific Northwest Research Station, U. S. Forest Service, Corvallis, OR, 97731, U.S.A., Jones JB; Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, U.S.A., Kominoski JS; Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, FL, 33199, U.S.A., McDowell WH; Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, U.S.A., Rosemond AD; Odum School of Ecology, University of Georgia, Athens, GA, 30602, U.S.A., Trentman MT; Division of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, U.S.A., Van Horn D; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, U.S.A., Ward A; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, U.S.A.
المصدر: Biological reviews of the Cambridge Philosophical Society [Biol Rev Camb Philos Soc] 2020 Dec 17. Date of Electronic Publication: 2020 Dec 17.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Cambridge University Press Country of Publication: England NLM ID: 0414576 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-185X (Electronic) Linking ISSN: 00063231 NLM ISO Abbreviation: Biol Rev Camb Philos Soc Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, Cambridge University Press.
مستخلص: Anthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient-enrichment effects within streams and rivers. We conducted a meta-analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem). Our synthesis included 184 studies, 885 experiments, and 3497 biotic responses to nutrient enrichment. We documented widespread increases in organismal biomass and abundance (mean response = +48%) and rates of ecosystem processes (+54%) to enrichment across multiple trophic levels, with no large differences in responses among trophic levels or between autotrophic or heterotrophic food-web pathways. Responses to nutrient enrichment varied with the nutrient added (N, P, or both) depending on rate versus state variable and experiment type, and were greater in flume and whole-stream experiments than in experiments using nutrient-diffusing substrata. Generally, nutrient-enrichment effects also increased with water temperature and light, and decreased under elevated ambient concentrations of inorganic N and/or P. Overall, increased concentrations of N and/or P altered multiple food-web pathways and trophic levels in lotic ecosystems. Our results indicate that preservation or restoration of biodiversity and ecosystem functions of streams and rivers requires management of nutrient inputs and consideration of multiple trophic pathways.
(© 2020 Cambridge Philosophical Society.)
References: *Abelho, M. & Graca, M. A. S. (2006). Effects of nutrient enrichment on decomposition and fungal colonization of sweet chestnut leaves in an Iberian stream (Central Portugal). Hydrobiologia 560, 239–247.
*Abelho, M., Moretti, M., Franca, J. & Callisto, M. (2010). Nutrient addition does not enhance leaf decomposition in a southeastern Brazilian stream (Espinhaco mountain range). Brazilian Journal of Biology 70, 747–754.
Aber, J. D. & Melillo, J. M. (2001). Terrestrial Ecosystems, 2nd Edition (). Academic Press, San Diego.
Abrams, P. A. (1993). Effect of increased productivity on the abundances of trophic levels. The American Naturalist 141, 351–371.
Aertsen, W., Kint, V., De Vos, B., Deckers, J., van Orshoven, J. & Muys, B. (2012). Predicting forest site productivity in temperate lowland from forest floor, soil, and litterfall characteristics using boosted regression trees. Plant and Soil 354, 157–172.
*Allen, N. S. & Hershey, A. E. (1996). Seasonal changes in chlorophyll alpha response to nutrient amendments in a north shore tributary of Lake Superior. Journal of the North American Benthological Society 15, 170–178.
*Anderson, E. L., Welch, E. B., Jacoby, J. M., Schimek, G. M. & Horner, R. R. (1999). Periphyton removal related to phosphorus and grazer biomass level. Freshwater Biology 41, 633–651.
*Ardon, M. & Pringle, C. M. (2007). The quality of organic matter mediates the response of heterotrophic biofilms to phosphorus enrichment of the water column and substratum. Freshwater Biology 52, 1762–1772.
*Ardon, M., Stallcup, L. A. & Pringle, C. M. (2006). Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams? Freshwater Biology 51, 618–633.
*Artigas, J., Romani, A. M. & Sabater, S. (2008). Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquatic Botany 88, 32–38.
*Artigas, J., Romaní, A. M. & Sabater, S. (2015). Nutrient and enzymatic adaptations of stream biofilms to changes in nitrogen and phosphorus supply. Aquatic Microbial Ecology 75, 91–102.
*Back, J. A., Taylor, J. M., King, R. S., Fallert, K. L. & Hintzen, E. H. (2008). Ontogenic differences in mayfly stoichiometry influence growth rates in response to phosphorus enrichment. Fundamental and Applied Limnology 171, 233–240.
*Bækkelie, K. A. E., Schneider, S. C., Hagman, C. H. C. & Petrin, Z. (2017). Effects of flow events and nutrient addition on stream periphyton and macroinvertebrates: an experimental study using flumes. Knowledge & Managment of Aquatic Ecosystems 418, 47.
*Baker, P. D., Brookes, J. D., Burch, M. D., Maier, H. R. & Ganf, G. G. (2000). Advection, growth and nutrient status of phytoplankton populations in the lower river Murray, South Australia. Regulated Rivers‐Research & Management 16, 327–344.
Beck, W. S. & Hall, E. K. (2018). Confounding factors in algal phosphorus limitation experiments. PLoS One 13(10), e0205684. https://doi.org/10.1371/journal.pone.0205684.
Beck, W. S., Rugenski, A. T. & Poff, N. L. (2017). Influence of experimental, environmental, and geographic factors on nutrient‐diffusing substrate experiments in running waters. Freshwater Biology 62, 1667–1680.
*Benstead, J. P., Deegan, L. A., Peterson, B. J., Huryn, A. D., Bowden, W. B., Suberkropp, K., Buzby, K. M., Green, A. C. & Vacca, J. A. (2005). Responses of a beaded Arctic stream to short‐term N and P fertilisation. Freshwater Biology 50, 277–290.
*Benstead, J. P., Rosemond, A. D., Cross, W. F., Wallace, J. B., Eggert, S. L., Suberkropp, K., Gulis, V., Greenwood, J. L. & Tant, C. J. (2009). Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem. Ecology 90, 2556–2566.
Benstead, J. P., Hood, J. M., Whelan, N. V., Kendrick, M. R., Nelson, D., Hanninen, A. F. & Demi, L. M. (2014). Coupling of dietary phosphorus and growth across diverse fish taxa: a meta‐analysis of experimental aquaculture studies. Ecology 95, 2768–2777.
*Bergey, E. A. & Resh, V. H. (1994). Interactions between a stream caddisfly and the algae on its case ‐ factors affecting algal quantity. Freshwater Biology 31, 153–163.
*Bergfur, J. & Friberg, N. (2012). Trade‐offs between fungal and bacterial respiration along gradients in temperature, nutrients and substrata: experiments with stream derived microbial communities. Fungal Ecology 5, 46–52.
*Berggren, M., Laudon, H. & Jansson, M. (2007). Landscape regulation of bacterial growth efficiency in boreal freshwaters. Global Biogeochemical Cycles 21, GB4002.
*Berggren, M., Laudon, H., Jonsson, A. & Jansson, M. (2010). Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microbial Ecology 60, 894–902.
*Bernhardt, E. S. & Likens, G. E. (2004). Controls on periphyton biomass in heterotrophic streams. Freshwater Biology 49, 14–27.
Biggs, B. J. F. (2000). Eutrophication of streams and rivers: dissolved nutrient‐chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19, 17–31.
*Biggs, B. J. F. & Lowe, R. L. (1994). Responses of two trophic levels to patch enrichment along a New Zealand stream continuum. New Zealand Journal of Marine and Freshwater Research 28, 119–134.
*Biggs, B. J. F., Kilroy, C. & Lowe, R. L. (1998). Periphyton development in three valley segments of a New Zealand grassland river: test of a habitat matrix conceptual model within a catchment. Archiv Fur Hydrobiologie 143, 147–177.
*Biggs, B. J. F., Tuchman, N. C., Lowe, R. L. & Stevenson, R. J. (1999). Resource stress alters hydrological disturbance effects in a stream periphyton community. Oikos 85, 95–108.
Black, R. W., Moran, P. W. & Frankforter, J. D. (2011). Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams. Environmental Monitoring and Assessment 175, 397–417.
*Bondar‐Kunze, E., Maier, S., Schönauer, D., Bahl, N. & Hein, T. (2016). Antagonistic and synergistic effects on a stream periphyton community under the influence of pulsed flow velocity increase and nutrient enrichment. Science of the Total Environment 573, 594–602.
*Bothwell, M. L. (1989). Phosphorus limited growth dynamics of lotic periphytic diatom communities ‐ areal biomass and cellular growth‐rate responses. Canadian Journal of Fisheries and Aquatic Sciences 46, 1293–1301.
*Bothwell, M. L. & Kilroy, C. (2011). Phosphorus limitation of the freshwater benthic diatom Didymosphenia geminata determined by the frequency of dividing cells. Freshwater Biology 56, 565–578.
Bourassa, N. & Cattaneo, A. (1998). Control of periphyton biomass in Laurentian streams (Quebec). Journal of the North American Benthological Society 17, 420–429.
*Bourassa, N. & Cattaneo, A. (2000). Responses of a lake outlet community to light and nutrient manipulation: effects on periphyton and invertebrate biomass and composition. Freshwater Biology 44, 629–639.
*Bowes, M. J., Smith, J. T., Hilton, J., Sturt, M. M. & Armitage, P. D. (2007). Periphyton biomass response to changing phosphorus concentrations in a nutrient‐impacted river: a new methodology for phosphorus target setting. Canadian Journal of Fisheries and Aquatic Sciences 64, 227–238.
*Bowes, M. J., Ings, N. L., McCall, S. J., Warwick, A., Barrett, C., Wickham, H. D., Harman, S. A., Armstrong, L. K., Scarlett, P. M., Roberts, C., Lehmann, K. & Singer, A. C. (2012). Nutrient and light limitation of periphyton in the river Thames: implications for catchment management. Science of the Total Environment 434, 201–212.
Bumpers, P. M., Maerz, J. C., Rosemond, A. D. & Benstead, J. P. (2015) Salamander growth rates increase along an experimental stream phosphorus gradient. Ecology, 96, 2994–3004.
Bumpers, P. M., Rosemond, A. D., Maerz, J. C. & Benstead, J. P. (2017) Experimental nutrient enrichment of forest streams increases energy flow to predators along greener food‐web pathways. Freshwater Biology, 62, 1794–1805.
*Bushong, S. J. & Bachmann, R. W. (1989). In situ nutrient enrichment experiments with periphyton in agricultural streams. Hydrobiologia 178, 1–10.
*Busse, L. B., Simpson, J. C. & Cooper, S. D. (2006). Relationships among nutrients, algae, and land use in urbanized southern California streams. Canadian Journal of Fisheries and Aquatic Sciences 63, 2621–2638.
Capps, K. A., Booth, M. T., Collins, S. M., Davison, M. A., Moslemi, J. M., El‐sabaawi, R. W., Simonis, J. L. & Flecker, A. S. (2011). Nutrient diffusing substrata: a field comparison of commonly used methods to assess nutrient limitation. Journal of the North American Benthological Society 30, 522–532.
*Castillo, M. M., Kling, G. W. & Allan, J. D. (2003). Bottom‐up controls on bacterial production in tropical lowland rivers. Limnology and Oceanography 48, 1466–1475.
*Chadwick, M. A. & Huryn, A. D. (2003). Effect of a whole‐catchment N addition on stream detritus processing. Journal of the North American Benthological Society 22, 194–206.
*Chadwick, M. A. & Huryn, A. D. (2005). Response of stream macroinvertebrate production to atmospheric nitrogen deposition and channel drying. Limnology and Oceanography 50, 228–236.
*Chase, J. W., Benoy, G. A. & Culp, J. M. (2017). Combined effects of nutrient enrichment and inorganic sedimentation on benthic biota in an experimental stream system. Water Quality Research Journal 52, 151–165.
*Chessman, B. C., Hutton, P. E. & Burch, J. M. (1992). Limiting nutrients for periphyton growth in sub‐alpine, forest, agricultural and urban streams. Freshwater Biology 28, 349–361.
Chrzanowski, T. H. & Kyle, M. (1996). Ratios of carbon, nitrogen, and phosphorus in Pseudomonas fluorescens as a model for bacterial element ratios and nutrient regeneration. Aquatic Microbial Ecology 10, 115–122.
*Chung, N. & Suberkropp, K. (2008). Influence of shredder feeding and nutrients on fungal activity and community structure in headwater streams. Fundamental and Applied Limnology 173, 35–46.
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science 323, 1014–1015.
R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/.
*Corkum, L. D. (1996). Responses of chlorophyll‐a, organic matter, and macroinvertebrates to nutrient additions in rivers flowing through agricultural and forested land. Archiv Fur Hydrobiologie 136, 391–411.
*Cross, W. F., Johnson, B. R., Wallace, J. B. & Rosemond, A. D. (2005). Contrasting response of stream detritivores to long‐term nutrient enrichment. Limnology and Oceanography 50, 1730–1739.
*Cross, W. F., Wallace, J. B., Rosemond, A. D. & Eggert, S. L. (2006). Whole‐system nutrient enrichment increases secondary production in a detritus‐based ecosystem. Ecology 87, 1556–1565.
*Cross, W. F., Wallace, J. B. & Rosemond, A. D. (2007). Nutrient enrichment reduces constraints on material flows in a detritus‐based food web. Ecology 88, 2563–2575.
*Dalton, R. L., Boutin, C. & Pick, F. R. (2015). Determining in situ periphyton community responses to nutrient and atrazine gradients via pigment analysis. Science of the Total Environment 515–516, 70–82.
*Datri, C. W., Pray, C. L., Zhang, Y. & Nowlin, W. H. (2015). Nutrient enrichment scarcely affects ecosystem impacts of a non‐native herbivore in a spring‐fed river. Freshwater Biology 60, 551–562.
*Davies, J. M. & Bothwell, M. L. (2012). Responses of lotic periphyton to pulses of phosphorus: P‐flux controlled growth rate. Freshwater Biology 57, 2602–2612.
*Davis, J. M., Rosemond, A. D., Eggert, S. L., Cross, W. F. & Wallace, J. B. (2010). Long‐term nutrient enrichment decouples predator and prey production. Proceedings of the National Academy of Sciences of the United States of America 107, 121–126.
*Deans, C. A., Behmer, S. T., Kay, A. & Voelz, N. (2015). The importance of dissolved N:P ratios on mayfly (Baetis spp.) growth in high‐nutrient detritus‐based streams. Hydrobiologia 742, 15–26.
De'ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology 88, 243–251.
*Death, R. G., Death, F. & Ausseil, O. M. N. (2007). Nutrient limitation of periphyton growth in tributaries and the mainstem of a central North Island river, New Zealand. New Zealand Journal of Marine and Freshwater Research 41, 273–281.
*Demi, L. M., Benstead, J. P., Rosemond, A. D. & Maerz, J. C. (2018). Litter P content drives consumer production in detritus‐based streams spanning an experimental N:P gradient. Ecology 99, 347–359.
Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929.
Dodds, W. K. (2006). Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51, 671–680.
Dodds, W. K. (2007). Trophic state, eutrophication and nutrient criteria in streams. Trends in Ecology & Evolution 22, 669–676.
Dodds, W. K., Jones, J. R. & Welch, E. B. (1998). Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32, 1455–1462.
Dodds, W. K., Lopez, A. J., Bowden, W. B., Gregory, S., Grimm, N. B., Hamilton, S. K., Hershey, A. E., Marti, E., McDowell, W. H., Meyer, J. L., Morrall, D., Mulholland, P. J., Peterson, J. B., Tank, J. L., Valett, H. M., et al. (2002). N uptake as a function of concentration in streams. Journal of the North American Benthological Society 21, 206–220.
Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, J. T. & Thornbrugh, D. J. (2009). Eutrophication of US freshwaters: analysis of potential economic damages. Environmental Science & Technology 43, 12–19.
Downing, J. A., Osenberg, C. W. & Sarnelle, O. (1999). Meta‐analysis of marine nutrient‐enrichment experiment: variation in the magnitude of nutrient limitation. Ecology 80, 1157–1167.
*Eckert, R. A. & Carrick, H. J. (2014). Evidence for consumer regulation of biofilm–nutrient interactions among hardwater streams (Pennsylvania, USA). Hydrobiologia 722, 183–198.
*Elbrecht, V., Beermann, A. J., Goessler, G., Neumann, J., Tollrian, R., Wagner, R., Wlecklik, A., Piggott, J. J., Matthaei, C. D. & Leese, F. (2016). Multiple‐stressor effects on stream invertebrates: a mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshwater Biology 61, 362–375.
Elith, J. & Leathwick, J. (2017). Boosted Regression Trees for ecological modeling. R. Package. https://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf.
Elith, J., Leathwick, J. R. & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813.
*Elsdon, T. S. & Limburg, K. E. (2008). Nutrients and their duration of enrichment influence periphyton cover and biomass in rural and urban streams. Marine and Freshwater Research 59, 467–476.
Elser, J. J., Marzolf, E. R. & Goldman, C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47, 1468–1477.
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. & Schampel, J. H. (1996). Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. Bioscience 46, 674–684.
*Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B. & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10, 1135–1142.
*Elwood, J., Newbold, J. D. & Stark, R. W. (1981). The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62, 146–158.
Englund, G., Cooper, S. D. & Sarnelle, O. (2001). Application of a model of scale dependence to quantify scale domains in open predation experiments. Oikos 92, 501–514.
EPA (2013). U.S. E.P.A Expert Workshop: Nutrient Enrichment Indicators in Streams. https://www.epa.gov/sites/production/files/2013-09/documents/indicatorsworkshop.pdf.
Eriksson, B. K., Rubach, A. & Hillebrand, H. (2006). Biotic habitat complexity controls species diversity and nutrient effects on net biomass production. Ecology 87, 246–254.
Evans‐White, M. A., Dodds, W. K., Huggins, D. G. & Baker, D. S. (2009). Thresholds in macroinvertebrate biodiversity and stoichiometry across water‐quality gradients in Central Plains (USA) streams. Journal of the North American Benthological Society 28, 855–868.
*Ferreira, V. & Graca, M. A. S. (2007). Fungal activity associated with decomposing wood is affected by nitrogen concentration in water. International Review of Hydrobiology 92, 1–8.
*Ferreira, V., Gulis, V. & Graca, M. A. S. (2006). Whole‐stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149, 718–729.
Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E. & Graca, M. (2015). A meta‐analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews 90, 669–688.
Fetscher, A. E., Howard, M. G., Stancheva, R. G., Kudela, M., Stein, E. D., Sutula, M. A., Busse, L. B. & Sheath, R. G. (2015). Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae 49, 105–116.
*Findlay, S. & Sinsabaugh, R. L. (2003). Response of hyporheic biofilm metabolism and community structure to nitrogen amendments. Aquatic Microbial Ecology 33, 127–136.
*Flecker, A. S., Taylor, B. W., Bernhardt, E. S., Hood, J. M., Cornwell, W. K., Cassatt, S. R., Vanni, M. J. & Altman, N. S. (2002). Interactions between herbivorous fishes and limiting nutrients in a tropical stream ecosystem. Ecology 83, 1831–1844.
*Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J., Manning, D. W. P., Rosemond, A. D., Sinsabaugh, R. L., Swan, C. M., Webster, J. R. & Zeglin, L. H. (2017). Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology 23, 3064–3075.
*Forrester, G. E., Dudley, T. L. & Grimm, N. B. (1999). Trophic interactions in open systems: effects of predators and nutrients on stream food chains. Limnology and Oceanography 44, 1187–1197.
Francoeur, S. E. (2001). Meta‐analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20, 358–368.
*Francoeur, S. N., Biggs, B. J. F., Smith, R. A. & Lowe, R. L. (1999). Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. Journal of the North American Benthological Society 18, 242–260.
*Gafner, K. & Robinson, C. T. (2007). Nutrient enrichment influences the responses of stream macroinvertebrates to disturbance. Journal of the North American Benthological Society 26, 92–102.
*García, L., Pardo, I., Cross, W. F. & Richardson, J. S. (2017). Moderate nutrient enrichment affects algal and detritus pathways differently in a temperate rainforest stream. Aquatic Sciences 79, 941–952.
*Gaudes, A., Ocana, J. & Munoz, I. (2012). Meiofaunal responses to nutrient additions in a Mediterranean stream. Freshwater Biology 57, 956–968.
*Gibeau, G. G. & Miller, M. C. (1989). A micro‐bioassay for epilithon using nutrient‐diffusing artificial substrata. Journal of Freshwater Ecology 5, 171–176.
*Grattan, R. M. & Suberkropp, K. (2001). Effects of nutrient enrichment on yellow poplar leaf decomposition and fungal activity in streams. Journal of the North American Benthological Society 20, 33–43.
*Greenwood, J. L. & Rosemond, A. D. (2005). Periphyton response to long‐term nutrient enrichment in a shaded headwater stream. Canadian Journal of Fisheries and Aquatic Sciences 62, 2033–2045.
*Greenwood, J. L., Rosemond, A. D., Wallace, J. B., Cross, W. F. & Weyers, H. S. (2007). Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom‐up effects via heterotrophic pathways. Oecologia 151, 637–649.
*Grimm, N. B. & Fisher, S. G. (1986). Nitrogen limitation in a Sonoran Desert stream. Journal of the North American Benthological Society 5, 2–15.
*Grimm, N. B., Sheibley, R. W., Crenshaw, C. L., Dahm, C. N., Roach, W. J. & Zeglin, L. H. (2005). N retention and transformation in urban streams. Journal of the North American Benthological Society 24, 626–642.
Groffman, P. M., Baron, J. S., Blett, T., Gold, A. J., Goodman, I., Gunderson, L. H., Levinson, B. M., Palmer, M. A., Paerl, H. W., Peterson, G. D., Poff, N. L., Rejeski, D. W., Reynolds, J. F., Turner, M. G., Weathers, K. C. & Wiens, J. (2006). Ecological thresholds: the key to successful environmental management or an important concept with no practical application. Ecosystems 9, 1–13.
*Guasch, H., Marti, E. & Sabater, S. (1995). Nutrient enrichment effects on biofilm metabolism in a mediterranean stream. Freshwater Biology 33, 373–383.
*Gudmundsdottir, R., Olafsson, J. S., Palsson, S., Gislason, G. M. & Moss, B. (2011). How will increased temperature and nutrient enrichment affect primary producers in sub‐Arctic streams? Freshwater Biology 56, 2045–2058.
*Gulis, V., Ferreira, V. & Graca, M. A. S. (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51, 1655–1669.
Gulis, V., Kuehn, K. A., Schoettle, L. N., Leach, D., Benstead, J. P. & Rosemond, A. D. (2017). Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter‐associated fungi in response to inorganic nutrient supply. ISME Journal 11, 2729–2739.
Hall, R. O., Tank, J. L., Baker, M. A., Rosi‐Marshall, E. J. & Hotchkiss, E. R. (2016). Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19, 73–86.
*Halvorson, H. M., Scott, E. E., Entrekin, S. A., Evans‐White, M. A. & Scott, J. T. (2016). Light and dissolved phosphorus interactively affect microbial metabolism, stoichiometry and decomposition of leaf litter. Freshwater Biology 61, 1006–1019.
*Hart, D. D. & Robinson, C. T. (1990). Resource limitation in a stream community ‐ phosphorus enrichment effects on periphyton and grazers. Ecology 71, 1494–1502.
*Hepinstall, J. A. & Fuller, R. L. (1994). Periphyton reactions to different light and nutrient levels and the response of bacteria to these manipulations. Archiv Fur Hydrobiologie 131, 161–173.
*Hill, W. R. & Fanta, S. E. (2008). Phosphorus and light colimit periphyton growth at subsaturating irradiances. Freshwater Biology 53, 215–225.
*Hill, W. R. & Knight, A. W. (1988). Nutrient and light limitation of algae in two northern California streams. Journal of Phycology 24, 125–132.
*Hill, W. R., Boston, H. L. & Steinman, A. D. (1992). Grazers and nutrients simultaneously limit lotic primary productivity. Canadian Journal of Fisheries and Aquatic Sciences 49, 504–512.
*Hill, W. R., Fanta, S. E. & Roberts, B. J. (2008). C‐13 dynamics in benthic algae: effects of light, phosphorus, and biomass development. Limnology and Oceanography 53, 1217–1226.
Hill, W. R., Rinchard, J. & Czesny, S. (2011a). Light, nutrients and the fatty acid composition of stream periphyton. Freshwater Biology 56, 1825–1836.
*Hill, W. R., Roberts, B. J., Francoeur, S. N. & Fanta, S. E. (2011b). Resource synergy in stream periphyton communities. Journal of Ecology 99, 454–463.
Hillebrand, H. (2002). Top‐down versus bottom‐up control of autotrophic biomass—a meta‐analysis on experiments with periphyton. Journal of the North American Benthological Society 21, 349–369.
*Holland, D., Roberts, S. & Beardall, J. (2004). Assessment of the nutrient status of phytoplankton: a comparison between conventional bioassays and nutrient‐induced fluorescence transients (NIFTs). Ecological Indicators 4, 149–159.
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P. & Zhu, Z. L. (1996). Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35, 75–139.
*Irvine, R. L. & Jackson, L. J. (2006). Spatial variance of nutrient limitation of periphyton in montane, headwater streams (McLeod River, Alberta, Canada). Aquatic Ecology 40, 337–348.
*Jabiol, J., Cornut, J., Tlili, A. & Gessner, M. O. (2018). Interactive effects of dissolved nitrogen, phosphorus and litter chemistry on stream fungal decomposers. FEMS Microbiology Ecology 94, fiy151.
*Johnson, L. T., Tank, J. L. & Dodds, W. K. (2009). The influence of land use on stream biofilm nutrient limitation across eight north American ecoregions. Canadian Journal of Fisheries and Aquatic Sciences 66, 1081–1094.
Keck, O. I. S. & Lepori, F. (2012). Can we predict nutrient limitation in streams and rivers? Freshwater Biology 57, 1410–1421.
*Keithan, E. D., Lowe, R. L. & Deyoe, H. R. (1988). Benthic diatom distribution in a Pennsylvania stream ‐ role of pH and nutrients. Journal of Phycology 24, 581–585.
*Keldsen, K. (1996). Regulation of algal biomass in a small lowland stream: field experiments on the role of invertebrate grazing, phosphorus and irradiance. Freshwater Biology 36, 535–546.
*Kendrick, M. R. & Benstead, J. P. (2013). Temperature and nutrient availability interact to mediate growth and body stoichiometry in a detritivorous stream insect. Freshwater Biology 58, 1820–1830.
*Kiffney, P. M. & Richardson, J. S. (2001). Interactions among nutrients, periphyton, and invertebrate and vertebrate (Ascaphus truei) grazers in experimental channels. Copeia 2001, 422–429.
*Kilroy, C. & Larned, S. T. (2016). Contrasting effects of low‐level phosphorus and nitrogen enrichment on growth of the mat‐forming alga Didymosphenia geminata in an oligotrophic river. Freshwater Biology 61, 1550–1567.
*Klose, K., Cooper, S. D. & Leydecker, A. D. (2012). Relationships among catchment land use and concentrations of nutrients, algae, and dissolved oxygen in a southern California river. Journal of the North American Benthological Society 31, 908–927.
*Klose, K., Cooper, S. D. & Bennett, D. M. (2015). Effects of wildfire on stream algal abundance, community structure, and nutrient limitation. Freshwater Science 34, 1494–1509.
Knapp, G. & Hartung, J. (2003). Improved tests for a random effects meta‐regression with a single covariate. Statistics in Medicine 22, 2693–2710.
*Kominoski, J. S., Rosemond, A. D., Benstead, J. P., Gulis, V., Maerz, J. C. & Manning, D. W. P. (2015). Low‐to‐moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates. Ecological Applications 25, 856–865.
*Kominoski, J. S., Rosemond, A. D., Benstead, J. P., Gulis, V. & Manning, D. W. P. (2018). Experimental nitrogen and phosphorus additions increase rates of stream ecosystem respiration and carbon loss. Limnology and Oceanography 63, 22–36.
*Lang, D. A., King, R. S. & Scott, J. T. (2012). Divergent responses of biomass and enzyme activities suggest differential nutrient limitation in stream periphyton. Freshwater Science 31, 1096–1104.
*Larned, S. T. & Santos, S. R. (2000). Light‐ and nutrient‐limited periphyton in low order streams of Oahu, Hawaii. Hydrobiologia 432, 101–111.
Lau, D. C. P., Leung, K. M. Y. & Dudgeon, D. (2009). Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28, 426–439.
Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T. & Taylor, P. (2006). Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series 321, 267–281.
Lewis, W. M., Wurtsbaugh, W. A. & Paerl, H. W. (2011). Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environmental Science & Technology 45, 10300–10305.
*Liess, A. & Hillebrand, H. (2006). Role of nutrient supply in grazer‐periphyton interactions: reciprocal influences of periphyton and grazer nutrient stoichiometry. Journal of the North American Benthological Society 25, 632–642.
*Liess, A. & Kahlert, M. (2009). Gastropod grazers affect periphyton nutrient stoichiometry by changing benthic algal taxonomy and through differential nutrient uptake. Journal of the North American Benthological Society 28, 283–293.
*Liess, A., Lange, K., Schulz, F., Piggott, J. J., Matthaei, C. D. & Townsend, C. R. (2009). Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. Journal of Ecology 97, 326–336.
*Lin, Y. J., He, Z. L., Yang, Y. G., Stoffella, P. J., Phlips, E. J. & Powell, C. A. (2008). Nitrogen versus phosphorus limitation of phytoplankton growth in ten Mile Creek, Florida, USA. Hydrobiologia 605, 247–258.
Lindeman, R. L. (1942). The trophic‐dynamic aspect of ecology. Ecology 23, 399–418.
*Lock, M. A., Ford, T. E., Hullar, M. A. J., Kaufman, M., Vestal, J. R., Volk, G. S. & Ventullo, R. M. (1990). Phosphorus limitation in an arctic river biofilm ‐ a whole ecosystem experiment. Water Research 24, 1545–1549.
*Lohman, K., Jones, J. R. & Baysingerdaniel, C. (1991). Experimental‐evidence for nitrogen limitation in a northern Ozark stream. Journal of the North American Benthological Society 10, 14–23.
*Lourenço‐Amorim, C., Neres‐Lima, V., Moulton, T. P., Sasada‐Sato, C. Y., Oliveira‐Cunha, P. & Zandonà, E. (2014). Control of periphyton standing crop in an Atlantic Forest stream: the relative roles of nutrients, grazers and predators. Freshwater Biology 59, 2365–2373.
*Lowe, R. L., Golladay, S. W. & Webster, J. R. (1986). Periphyton responses to nutrient manipulation in streams draining clearcut and forested watersheds. Journal of the North American Benthological Society 5, 221–229.
*Lowell, R. B., Culp, J. M. & Wrona, F. J. (1995). Stimulation of increased short‐term growth and development of mayflies by pulp‐mill effluent. Environmental Toxicology and Chemistry 14, 1529–1541.
*Mallin, M. A., McIver, M. R., Ensign, S. H. & Cahoon, L. B. (2004). Photosynthetic and heterotrophic impacts of nutrient loading to Blackwater streams. Ecological Applications 14, 823–838.
*Mallory, M. A. & Richardson, J. S. (2005). Complex interactions of light, nutrients and consumer density in a stream periphyton‐grazer (tailed frog tadpoles) system. Journal of Animal Ecology 74, 1020–1028.
*Manning, D. W. P., Rosemond, A. D., Kominoski, J. S., Gulis, V., Benstead, J. P. & Maerz, J. C. (2015). Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates. Ecology 96, 2214–2224.
*Manning, D. W. P., Rosemond, A. D., Gulis, V., Benstead, J. P., Kominoski, J. S. & Maerz, J. C. (2016). Convergence of detrital stoichiometry predicts thresholds of nutrient‐stimulated breakdown in streams. Ecological Applications 26, 1745–1757.
*Manning, D. W. P., Rosemond, A. D., Gulis, V., Benstead, J. P. & Kominoski, J. S. (2018). Nutrients and temperature additively increase stream microbial respiration. Global Change Biology 24, e233–e247.
Marcarelli, A. M., Baxter, C. V., Mineau, M. & Hall, R. O. (2011). Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92, 1215–1225.
*Marcus, M. D. (1980). Periphytic community response to chronic nutrient enrichment by a reservoir discharge. Ecology 61, 387–399.
*Marinelarena, A. J. & Di Giorgi, H. D. (2001). Nitrogen and phosphorus removal by periphyton from agricultural wastes in artificial streams. Journal of Freshwater Ecology 16, 347–353.
*Marks, J. C. & Power, M. E. (2001). Nutrient induced changes in the species composition of epiphytes on Cladophora glomerata Kutz. (Chlorophyta). Hydrobiologia 450, 187–196.
*Matthaei, C. D., Piggott, J. J. & Townsend, C. R. (2010). Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology 47, 639–649.
McCauley, E., Downing, J. A. & Watson, S. (1989). Sigmoid relationships between nutrients and chlorophyll among lakes. Canadian Journal of Fisheries and Aquatic Sciences 46, 1171–1175.
*McCormick, P. V. (1994). Evaluating the multiple mechanisms underlying herbivore algal interactions in streams. Hydrobiologia 291, 47–59.
*McCormick, P. V. & Stevenson, R. J. (1989). Effects of snail grazing on benthic algal community structure in different nutrient environments. Journal of the North American Benthological Society 8, 162–172.
*McCormick, P. V. & Stevenson, R. J. (1991). Grazer control of nutrient availability in the periphyton. Oecologia 86, 287–291.
*Miller, M. C., Deoliveira, P. & Gibeau, G. G. (1992). Epilithic diatom community response to years of PO4 fertilization ‐ Kuparuk River, Alaska (68 N lat.). Hydrobiologia 240, 103–119.
*Mitrovic, S. M., Bowling, L. C. & Buckney, R. T. (2001). Responses of phytoplankton to in‐situ nutrient enrichment; potential influences on species dominance in a river. International Review of Hydrobiology 86, 285–298.
*Mohamed, M. N. & Robarts, R. D. (2003). Sestonic bacterial nutrient limitation in a northern temperate river and the impact of pulp‐mill effluents. Aquatic Microbial Ecology 33, 19–28.
*Molinos, J. G. & Donohue, I. (2010). Interactions among temporal patterns determine the effects of multiple stressors. Ecological Applications 20, 1794–1800.
*Morris, L. & Nicholson, G. (2015). Can moderate increases in nutrient loads cause ecological effects in rivers already impacted by nutrients? Hydrobiologia 749, 213–229.
*Mosisch, T. D., Bunn, S. E., Davies, P. M. & Marshall, C. J. (1999). Effects of shade and nutrient manipulation on periphyton growth in a subtropical stream. Aquatic Botany 64, 167–177.
*Mulholland, P. J. & Brawley, S. H. (2000). Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients, and herbivores. Canadian Journal of Fisheries and Aquatic Sciences 57, 66–75.
*Mulholland, P. J., Steinman, A. D., Palumbo, A. V., Elwood, J. W. & Kirschtel, D. B. (1991). Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams. Ecology 72, 966–982.
Müller, D., Leitão, P. J. & Sikor, T. (2013). Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agricultural Systems 117, 66–77.
*Neif, É. M., Graeber, D., Rodrigues, L., Rosenhøj‐Leth, S., Jensen, T. M., Wiberg‐Larsen, P., Landkildehus, F., Riis, T. & Baattrup‐Pedersen, A. (2017). Responses of benthic algal communities and their traits to experimental changes in fine sediments, nutrients and flow. Freshwater Biology 62, 1539–1550.
*Nelson, C. E., Bennett, D. M. & Cardinale, B. J. (2013). Consistency and sensitivity of stream periphyton community structural and functional responses to nutrient enrichment. Ecological Applications 23, 159–173.
*Newbold, J. D., Elwood, J. W., Schulze, M. S., Stark, R. W. & Barmeier, J. C. (1983). Continuous ammonium enrichment of a woodland stream ‐ uptake kinetics, leaf decomposition, and nitrification. Freshwater Biology 13, 193–204.
*Notestein, S. K., Frazer, T. K., Hoyer, M. V. & Canfield, D. E. (2003). Nutrient limitation of periphyton in a spring‐fed, coastal stream in Florida, USA. Journal of Aquatic Plant Management 41, 57–60.
O'Brien, J. M. O. & Dodds, W. K. (2010). Saturation of NO32− uptake in prairie streams as a function of acute and chronic N exposure. Journal of the North American Benthological Society 29, 627–635.
Osenberg, C. W., Sarnelle, O., Cooper, S. D. & Holt, R. D. (1999). Resolving ecological questions through meta‐analysis: goals, metrics and models. Ecology 80, 1105–1117.
*Paaby, P. & Goldman, C. R. (1992). Chlorophyll, primary productivity, and respiration in a lowland Costa Rican stream. Revista De Biologia Tropical 40, 185–198.
Paerl, H. W., Valdes, L. M., Joyner, A. R. & Piehler, M. F. (2004). Solving problems resulting from solutions: evolution of a dual nutrient management strategy for the eutrophying Neuse river estuary, North Carolina. Environmental Science & Technology 38, 3068–3073.
Palmer, M. A. & Febria, C. M. (2012). The heartbeat of ecosystems. Science 336, 1393–1394.
*Pan, Y., Deng, G., Wang, L., Cao, Y., Pang, W., Wang, Q., Li, B., Wang, B., Zhang, J. & Xu, R. (2017). Effects of in situ phosphorus enrichment on the benthos in a subalpine karst stream and implications for bioassessment in nature reserves. Ecological Indicators 73, 274–283.
*Pearson, R. G. & Connolly, N. M. (2000). Nutrient enhancement, food quality and community dynamics in a tropical rainforest stream. Freshwater Biology 43, 31–42.
*Perrin, C. J. & Richardson, J. S. (1997). N and P limitation of benthos abundance in the Nechako River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 54, 2574–2583.
Persson, J., Fink, P., Goto, A., Hood, J. M., Jonas, J. & Kato, S. (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119, 741–751.
*Peterson, C. G. & Grimm, N. B. (1992). Temporal variation in enrichment effects during periphyton succession in a nitrogen‐limited desert stream ecosystem. Journal of the North American Benthological Society 11, 20–36.
*Peterson, B. J., Hobbie, J. E., Hershey, A. E., Lock, M. A., Ford, T. E., Vestal, J. R., McKinley, V. L., Hullar, M. A. J., Miller, M. C., Ventullo, R. M. & Volk, G. S. (1985). Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229, 1383–1386.
*Peterson, B. J., Deegan, L., Helfrich, J., Hobbie, J. E., Hullar, M., Moller, B., Ford, T. E., Hershey, A., Hiltner, A., Kipphut, G., Lock, M. A., Fiebig, D. M., McKinley, V., Miller, M. C., Vestal, J. R., Ventullo, R. & Volk, G. (1993). Biological responses of a tundra river to fertilization. Ecology 74, 653–672.
*Piggott, J. J., Lange, K., Townsend, C. R. & Matthaei, C. D. (2012). Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PLoS One 7, e49873.
*Piggott, J. J., Niyogi, D. K., Townsend, C. R. & Matthaei, C. D. (2015a). Multiple stressors and stream ecosystem functioning: climate warming and agricultural stressors interact to affect processing of organic matter. Journal of Applied Ecology 52, 1126–1134.
*Piggott, J. J., Salis, R. K., Lear, G., Townsend, C. R. & Matthaei, C. D. (2015b). Climate warming and agricultural stressors interact to determine stream periphyton community composition. Global Change Biology 21, 206–222.
*Piggott, J. J., Townsend, C. R. & Matthaei, C. D. (2015c). Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Global Change Biology 21, 1887–1906.
*Pringle, C. M. (1987). Effects of water and substratum nutrient supplies on lotic periphyton growth ‐ an integrated bioassay. Canadian Journal of Fisheries and Aquatic Sciences 44, 619–629.
*Pringle, C. M. (1990). Nutrient spatial heterogeneity ‐ effects on community structure, physiognomy, and diversity of stream algae. Ecology 71, 905–920.
*Pringle, C. M. & Bowers, J. (1984). An in situ substratum fertilization technique: diatom colonization on nutrient‐enriched sand substrata. Canadian Journal of Fisheries and Aquatic Sciences 41, 1247–1251.
*Pringle, C. M., Paabyhansen, P., Vaux, P. D. & Goldman, C. R. (1986). In situ nutrient assays of periphyton growth in a lowland Costa Rican stream. Hydrobiologia 134, 207–213.
*Ramirez, A. & Pringle, C. M. (2006). Fast growth and turnover of chironomid assemblages in response to stream phosphorus levels in a tropical lowland landscape. Limnology and Oceanography 51, 189–196.
*Rier, S. T. & Stevenson, R. J. (2002). Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia 489, 179–184.
Rier, S. T., Kinek, K. C., Hay, S. E. & Francoeur, S. N. (2016). Polyphosphate plays a vital role in the phosphorus dynamics of stream periphyton. Freshwater Science 32, 490–502.
*Roll, S. K., Diehl, S. & Cooper, S. D. (2005). Effects of grazer immigration and nutrient enrichment on an open algae‐grazer system. Oikos 108, 386–400.
*Romani, A. M., Giorgi, A., Acuna, V. & Sabater, S. (2004). The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnology and Oceanography 49, 1713–1721.
*Rosemond, A. D. (1993). Interactions among irradiance, nutrients, and herbivores constrain a stream algal community. Oecologia 94, 585–594.
*Rosemond, A. D., Mulholland, P. J. & Elwood, J. W. (1993). Top‐down and bottom‐up control of stream periphyton ‐ effects of nutrients and herbivores. Ecology 74, 1264–1280.
*Rosemond, A. D., Pringle, C. M., Ramirez, A. & Paul, M. J. (2001). A test of top‐down and bottom‐up control in a detritus‐based food web. Ecology 82, 2279–2293.
*Rosemond, A. D., Swan, C. M., Kominoski, J. S. & Dye, S. E. (2010). Non‐additive effects of litter mixing are suppressed in a nutrient‐enriched stream. Oikos 119, 326–336.
Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K. & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347, 1142–1145.
*Rossi, F., Pesce, S., Mallet, C., Margoum, C., Chaumot, A., Masson, M. & Artigas, J. (2018). Interactive effects of pesticides and nutrients on microbial communities responsible of litter decomposition in streams. Frontiers in Microbiology 9, 2437.
*Royer, T. V. & Minshall, G. W. (2001). Effects of nutrient enrichment and leaf quality on the breakdown of leaves in a hardwater stream. Freshwater Biology 46, 603–610.
*Sabater, S., Acuna, V., Giorgi, A., Guerra, E., Munoz, I. & Romani, A. M. (2005). Effects of nutrient inputs in a forested Mediterranean stream under moderate light availability. Archiv Fur Hydrobiologie 163, 479–496.
*Sabater, S., Artigas, J., Gaudes, A., Munoz, I., Urrea, G. & Romani, A. M. (2011). Long‐term moderate nutrient inputs enhance autotrophy in a forested Mediterranean stream. Freshwater Biology 56, 1266–1280.
*Sanderson, B. L., Coe, H. J., Tran, C. D., Macneale, K. H., Harstad, D. L. & Goodwin, A. B. (2009). Nutrient limitation of periphyton in Idaho streams: results from nutrient diffusing substrate experiments. Journal of the North American Benthological Society 28, 832–845.
*Sanpera‐Calbet, I., Ylla, I., Romaní, A. M., Sabater, S. & Muñoz, I. (2017). Biochemical quality of basal resources in a forested stream: effects of nutrient enrichment. Aquatic Sciences 79, 99–112.
Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature 413, 591–596.
Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M. & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37‐year whole‐ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America 105, 11254–11258.
*Scott, J. T., Lang, D. A., King, R. S. & Doyle, R. D. (2009). Nitrogen fixation and phosphatase activity in periphyton growing on nutrient diffusing substrata: evidence for differential nutrient limitation in stream periphyton. Journal of the North American Benthological Society 28, 57–68.
*Scrimgeour, G. J. & Chambers, P. A. (1997). Development and application of a nutrient‐diffusing bioassay for large rivers. Freshwater Biology 38, 221–231.
*Sharifi, M. & Ghafori, M. (2005). Effects of added nutrients on dry mass, AFDM, chlorophyll a and biovolume of periphyton algae in artificial streams. Iranian Journal of Science and Technology Transaction a‐Science 29, 29–38.
*Slavik, K., Peterson, B. J., Deegan, L. A., Bowden, W. B., Hershey, A. E. & Hobbie, J. E. (2004). Long‐term responses of the Kuparuk River ecosystem to phosphorus fertilization. Ecology 85, 939–954.
Small, G. E., Ardón, M., Duff, J. H., Jackman, A. P., Ramírez, A., Triska, F. J. & Pringle, C. M. (2016). Phosphorus retention in a lowland Neotropical stream following an eight‐year enrichment experiment. Freshwater Science 35, 1–11.
Smith, A. J., Thomas, R. L., Nolan, J. K., Velinsky, D. J., Klein, S. & Duffy, B. T. (2013). Regional nutrient thresholds in wadeable streams of New York state protective of aquatic life. Ecological Indicators 29, 455–467.
*Snyder, E. B., Robinson, C. T., Minshall, G. W. & Rushforth, S. R. (2002). Regional patterns in periphyton accrual and diatom assemblage structure in a heterogeneous nutrient landscape. Canadian Journal of Fisheries and Aquatic Sciences 59, 564–577.
*Stallcup, L. A., Ardón, M. & Pringle, C. M. (2006). Does nitrogen become limiting under high‐P conditions in detritus‐based tropical streams? Freshwater Biology 51, 1515–1526.
*Stanley, E. H., Short, R. A., Harrison, J. W., Hall, R. & Wiedenfeld, R. C. (1990). Variation in nutrient limitation of lotic and lentic algal communities in a Texas (USA) river. Hydrobiologia 206, 61–71.
*Steinman, A. D., Mulholland, P. J., Palumbo, A. V., Flum, T. F., Elwood, J. W. & Deangelis, D. L. (1990). Resistance of lotic ecosystems to a light elimination disturbance ‐ a laboratory stream study. Oikos 58, 80–90.
*Stelzer, R. A. & Lamberti, G. A. (2001). Effects of N: P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46(2), 357–367.
*Stelzer, R. S., Heffernan, J. & Likens, G. E. (2003). The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream. Freshwater Biology 48, 1925–1937.
*Stephens, S. H., Brasher, A. M. D. & Smith, C. M. (2012). Response of an algal assemblage to nutrient enrichment and shading in a Hawaiian stream. Hydrobiologia 683, 135–150.
Sterner, R. W. & Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
*Stevenson, R. J., Peterson, C. G., Kirschtel, D. B., King, C. C. & Tuchman, N. C. (1991). Density‐dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology 27, 59–69.
Stoner, N. (2011). EPA. Working in partnership with states to address phosphorus and nitrogen pollution through use of a framework for state nutrient reductions. https://www.epa.gov/nutrient-policy-data/working-partnership-states-address-phosphorus-and-nitrogen-pollution-through.
Stroud, J. T. & Feeley, K. J. (2017). Neglect of the tropics is widespread in ecology and evolution: a comment on Clarke et al. Trends in Ecology & Evolution 32, 626–628.
*Suberkropp, K. (2003). Leaf litter decomposition and microbial activity in nutrient‐enriched and unaltered reaches of a headwater stream. Freshwater Biology 48, 123–134.
Suberkropp, K., Gulis, V., Rosemond, A. D. & Benstead, J. P. (2010). Ecosystem and physiological scales of microbial responses to nutrients in a detritus‐based stream: results of a 5‐year continuous enrichment. Limnology and Oceanography 55, 149–160.
*Sumner, W. T. & McIntire, C. D. (1982). Grazer ‐ periphyton interactions in laboratory streams. Archiv Fur Hydrobiologie 93, 135–157.
Tanaka, T., Kawasaki, K., Daimon, S., Kitagawa, W., Yamamoto, K., Tamaki, H., Tanaka, M., Nakatsu, C. H. & Kamagata, Y. (2014). A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Applied and Environmental Microbiology 80, 7659–7666.
*Tank, J. L. & Dodds, W. K. (2003). Nutrient limitation of epilithic and epixylic biofilms in ten north American streams. Freshwater Biology 48, 1031–1049.
Tank, J. L., Reisinger, A. J. & Rosi, E. J. (2017). Nutrient limitation and uptake. In Methods in Stream Ecology, pp. 147–171. Elsevier, Amsterdam.
*Tant, C. J., Rosemond, A. D., Mehring, A. S., Kuehn, K. A. & Davis, J. M. (2015). The role of aquatic fungi in transformations of organic matter mediated by nutrients. Freshwater Biology 60, 1354–1363.
*Tate, C. M. (1990). Patterns and controls of nitrogen in tallgrass prairie streams. Ecology 71, 2007–2018.
*Taulbee, W. K., Cooper, S. D. & Melack, J. M. (2005). Effects of nutrient enrichment on algal biomass across a natural light gradient. Archiv Fur Hydrobiologie 164, 449–464.
*Taylor, J. M., Back, J. A. & King, R. S. (2012). Grazing minnows increase benthic autotrophy and enhance the response of periphyton elemental composition to experimental phosphorus additions. Freshwater Science 31, 451–462.
*Toetz, D. & Payton, M. E. (2004). Synergism of nutrients and humic acid in accrual of periphytic biomass in a subalpine stream, Colorado front range. Journal of Freshwater Ecology 19, 35–40.
*Townsend, S. A., Garcia, E. A. & Douglas, M. M. (2012). The response of benthic algal biomass to nutrient addition over a range of current speeds in an oligotrophic river. Freshwater Science 31, 1233–1243.
Van Nieuwenhuyse, E. E. & Jones, J. R. (1996). Phosphorus‐chlorophyll relationship in temperate streams and its variation with stream catchment area. Canadian Journal of Fisheries and Aquatic Sciences 53, 99–105.
*Veraart, A. J., Romani, A. M., Tornes, E. & Sabater, S. (2008). Algal response to nutrient enrichment in forested oligotrophic stream. Journal of Phycology 44, 564–572.
Viechtbauer, W. (2010). Conducting meta‐analyses in R with the metafor package. Journal of Statistical Software 36, 1–48.
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H. & Tilman, G. D. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7, 737–750.
*Von Schiller, D., Marti, E., Riera, J. L. & Sabater, F. (2007). Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology 52, 891–906.
*Walton, S. P., Welch, E. B. & Horner, R. R. (1995). Stream periphyton response to grazing and changes in phosphorus concentration. Hydrobiologia 302, 31–46.
Wang, L., Robertson, D. M. & Garrison, P. J. (2007). Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: implication to nutrient criteria development. Environmental Management 39, 194–212.
*Wellnitz, T. A., Rader, R. B. & Ward, J. V. (1996). Importance of light and nutrients in structuring an algal community in a Rocky Mountain stream. Journal of Freshwater Ecology 11, 399–413.
*Winterbourn, M. J. (1990). Interactions among nutrients, algae and invertebrates in a New Zealand mountain stream. Freshwater Biology 23, 463–474.
*Winterbourn, M. J. & Fegley, A. (1989). Effects of nutrient enrichment and grazing on periphyton assemblages in some spring‐fed, South Island streams. New Zealand Natural Sciences 16, 57–65.
*Winterbourn, M. J., Hildrew, A. G. & Orton, S. (1992). Nutrients, algae and grazers in some british streams of contrasting pH. Freshwater Biology 28, 173–182.
*Wold, A. P. & Hershey, A. E. (1999). Spatial and temporal variability of nutrient limitation in 6 north shore tributaries to Lake Superior. Journal of the North American Benthological Society 18, 2–14.
Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graca, M. A. S., Fleituch, T., Lacoursiere, J. O., Nistorescu, M., Pozo, J., Risnoveanu, G., Schindler, M., Vadineanu, A., Vought, L. B. M. & Chauvet, E. (2012). Continental‐scale effects of nutrient pollution on stream ecosystem functioning. Science 336, 1438–1440.
Wurtsbaugh, W. A., Paerl, H. W. & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water 6, e1373.
معلومات مُعتمدة: DEB-0832652 National Science Foundation; DEB-1713502 National Science Foundation
فهرسة مساهمة: Keywords: decomposition; ecosystem metabolism; eutrophication; lotic; nutrient criteria; primary and secondary production
تواريخ الأحداث: Date Created: 20201222 Latest Revision: 20240222
رمز التحديث: 20240223
DOI: 10.1111/brv.12673
PMID: 33350055
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-185X
DOI:10.1111/brv.12673