دورية أكاديمية

IL1β Promotes Immune Suppression in the Tumor Microenvironment Independent of the Inflammasome and Gasdermin D.

التفاصيل البيبلوغرافية
العنوان: IL1β Promotes Immune Suppression in the Tumor Microenvironment Independent of the Inflammasome and Gasdermin D.
المؤلفون: Kiss M; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Vande Walle L; VIB Center for Inflammation Research, Ghent, Belgium.; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium., Saavedra PHV; VIB Center for Inflammation Research, Ghent, Belgium.; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium., Lebegge E; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Van Damme H; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Murgaski A; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Qian J; Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium.; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium., Ehling M; Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium.; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium., Pretto S; Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium.; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium., Bolli E; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Keirsse J; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Bardet PMR; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Arnouk SM; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Elkrim Y; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Schmoetten M; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Brughmans J; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Debraekeleer A; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Fossoul A; VIB Center for Inflammation Research, Ghent, Belgium.; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium., Boon L; Polpharma Biologics, Utrecht, the Netherlands., Raes G; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., van Loo G; VIB Center for Inflammation Research, Ghent, Belgium.; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium., Lambrechts D; Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium.; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium., Mazzone M; Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium.; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium., Beschin A; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Wullaert A; VIB Center for Inflammation Research, Ghent, Belgium.; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium., Lamkanfi M; VIB Center for Inflammation Research, Ghent, Belgium.; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium., Van Ginderachter JA; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium. dlaoui@vub.be jo.van.ginderachter@vub.be.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium., Laoui D; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium. dlaoui@vub.be jo.van.ginderachter@vub.be.; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
المصدر: Cancer immunology research [Cancer Immunol Res] 2021 Mar; Vol. 9 (3), pp. 309-323. Date of Electronic Publication: 2020 Dec 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Association for Cancer Research Country of Publication: United States NLM ID: 101614637 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2326-6074 (Electronic) Linking ISSN: 23266066 NLM ISO Abbreviation: Cancer Immunol Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Philadelphia, PA : American Association for Cancer Research, [2013]-
مواضيع طبية MeSH: Tumor Escape*, Interleukin-1beta/*metabolism , Neoplasms/*immunology , Neutrophils/*immunology , Tumor Microenvironment/*immunology, Animals ; Cell Communication/immunology ; Disease Models, Animal ; Female ; Humans ; Inflammasomes/immunology ; Inflammasomes/metabolism ; Interleukin-1beta/genetics ; Intracellular Signaling Peptides and Proteins/genetics ; Intracellular Signaling Peptides and Proteins/metabolism ; Lymphocytes, Tumor-Infiltrating/immunology ; Mice ; Mice, Knockout ; Neoplasms/pathology ; Neutrophils/metabolism ; Phosphate-Binding Proteins/genetics ; Phosphate-Binding Proteins/metabolism ; T-Lymphocytes, Cytotoxic/immunology ; Tumor-Associated Macrophages/immunology
مستخلص: IL1β is a central mediator of inflammation. Secretion of IL1β typically requires proteolytic maturation by the inflammasome and formation of membrane pores by gasdermin D (GSDMD). Emerging evidence suggests an important role for IL1β in promoting cancer progression in patients, but the underlying mechanisms are ill-defined. Here, we have shown a key role for IL1β in driving tumor progression in two distinct mouse tumor models. Notably, activation of the inflammasome, caspase-8, as well as the pore-forming proteins GSDMD and mixed lineage kinase domain-like protein in the host were dispensable for the release of intratumoral bioactive IL1β. Inflammasome-independent IL1β release promoted systemic neutrophil expansion and fostered accumulation of T-cell-suppressive neutrophils in the tumor. Moreover, IL1β was essential for neutrophil infiltration triggered by antiangiogenic therapy, thereby contributing to treatment-induced immunosuppression. Deletion of IL1β allowed intratumoral accumulation of CD8 + effector T cells that subsequently activated tumor-associated macrophages. Depletion of either CD8 + T cells or macrophages abolished tumor growth inhibition in IL1β-deficient mice, demonstrating a crucial role for CD8 + T-cell-macrophage cross-talk in the antitumor immune response. Overall, these results support a tumor-promoting role for IL1β through establishing an immunosuppressive microenvironment and show that inflammasome activation is not essential for release of this cytokine in tumors.
(©2020 American Association for Cancer Research.)
References: Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.
Coffelt SB, de Visser KE. Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol. 2015;36:198–216.
Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet?. Science. 2013;339:286–91.
Van Gorp H, Lamkanfi M. The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO Rep. 2019;20:71–15.
Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19:197–214.
Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet North Am Ed. 2017;390:1833–42.
Chittezhath M, Dhillon MK, Lim JY, Laoui D, Shalova IN, Teo YL, et al. Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity. 2014;41:815–29.
Wu TC, Xu K, Martinek J, Young RR, Banchereau R, George J, et al. IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res. 2018;78:5243–58.
Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature. 2019;572:538–42.
Schmid MC, Avraamides CJ, Foubert P, Shaked Y, Kang SW, Kerbel RS, et al. Combined blockade of integrin-α4β1 plus cytokines SDF-1α or IL-1β potently inhibits tumor inflammation and growth. Cancer Res. 2011;71:6965–75.
Carmi Y, Dotan S, Rider P, Kaplanov I, White MR, Baron R, et al. The role of IL-1 in the early tumor cell-induced angiogenic response. J Immunol. 2013;190:3500–9.
Lee PH, Yamamoto TN, Gurusamy D, Sukumar M, Yu Z, Hu-Li J, et al. Host conditioning with IL-1β improves the antitumor function of adoptively transferred T cells. J Exp Med. 2019;216:2619–34.
Castaño Z, Juan BPS, Spiegel A, Pant A, DeCristo MJ, Laszewski T, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol. 2018;20:1084–21.
Van Gorp H, Van Opdenbosch N, Lamkanfi M. Inflammasome-dependent cytokines at the crossroads of health and autoinflammatory disease. Cold Spring Harb Perspect Biol. 2019;11:a028563–19.
Colasante A, Mascetra N, Brunetti M, Lattanzio G, Diodoro M, Caltagirone S, et al. Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small-cell lung tumors. Am J Respir Crit Care Med. 1997;156:968–73.
Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, et al. Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J Biol Chem. 2010;285:6477–88.
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–8.
Ershaid N, Sharon Y, Doron H, Raz Y, Shani O, Cohen N, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 2019;1–15.
Das S, Shapiro B, Vucic EA, Vogt S, Bar-Sagi D. Tumor cell–derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res. 2020;80:1088–40.
Fantuzzi G, Ku G, Harding MW, Livingston DJ, Sipe JD, Kuida K, et al. Response to local inflammation of IL-1 beta-converting enzyme- deficient mice. J Immunol. 1997;158:1818–24.
Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M, Corr M. Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 2009;60:3642–50.
Cassel SL, Janczy JR, Bing X, Wilson SP, Olivier AK, Otero JE, et al. Inflammasome-independent IL-1 mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A. 2014;111:1072–7.
Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519–29.
Luan J, Chen W, Fan J, Wang S, Zhang X, Zai W, et al. GSDMD membrane pore is critical for IL-1β release and antagonizing IL-1β by hepatocyte-specific nanobiologics is a promising therapeutics for murine alcoholic steatohepatitis. Biomaterials. 2019;227:119570.
Wu C, Lu W, Zhang Y, Zhang G, Shi X, Hisada Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity. 2019;50:1401–4.
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.
Boivin G, Faget J, Ancey PB, Gkasti A, Mussard J, Engblom C, et al. Durable and controlled depletion of neutrophils in mice. Nat Commun. 2020;1–9.
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24:1277–89.
Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020;352:1–18.
Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796–801.
Kargl J, Busch SE, Yang GHY, Kim KH, Hanke ML, Metz HE, et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat Commun. 2017;8:1–11.
Rizzo MG, Soddu S, Tibursi G, Calabretta B, Sacchi A. Wild-type p53 differentially affects tumorigenic and metastatic potential of murine metastatic cell variants. Clin Exp Metastasis. 1993;11:368–76.
Crosby EJ, Wei J, Yang XY, Lei G, Wang T, Liu CX, et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. OncoImmunology. 2018;7:e1421891–17.
Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70:5728–39.
Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Östling J, et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016;15:2000–11.
Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431–46.
Girbl T, Lenn T, Perez L, Rolas L, Barkaway A, Thiriot A, et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity. 2018;49:1062–6.
Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009;106:6742–7.
Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E, Bergers G. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic. therapy. Cell Rep. 2015;11:577–91.
Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516:246–9.
Afonina IS, Müller C, Martin SJ, Beyaert R. Proteolytic processing of interleukin-1 family cytokines: variations on a common theme. Immunity. 2015;42:991–1004.
Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature. 2011;1–6.
Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P, Tait SWG, et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of Gasdermin-D. J Immunol. 2017;198:2156–64.
Molinier-Frenkel V, Castellano F. Immunosuppressive enzymes in the tumor microenvironment. FEBS Lett. 2017;591:3135–57.
Corthay A, Skovseth DK, Lundin KU, Røsjø E, Omholt H, Hofgaard PO, et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity. 2005;22:371–83.
Spear P, Barber A, Rynda-Apple A, Sentman CL. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF. J Immunol. 2012;188:6389–98.
Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment. Proc Natl Acad Sci. 2018;115:E4041–50.
Franciszkiewicz K, Boissonnas A, Boutet M, Combadière C, Mami-Chouaib F. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 2012;72:6325–32.
Carmi Y, Rinott G, Dotan S, Elkabets M, Rider P, Voronov E, et al. Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J Immunol. 2011;186:3462–71.
Lu T, Ramakrishnan R, Altiok S, Youn J-I, Cheng P, Celis E, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest. 2011;121:4015–29.
Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin GV, Shurin MR, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2018;4:201812266–9.
Schönbeck U, Mach F, Libby P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J Immunol. 1998;161:3340–6.
Schett G, Dayer J-M, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol. 2016;12:14–24.
Cullen SP, Kearney CJ, Clancy DM, Martin SJ. Diverse activators of the NLRP3 inflammasome promote IL-1b secretion by triggering necrosis. Cell Rep. 2015;11:1535–48.
Tian T, Lofftus S, Pan Y, Stingley CA, King SL, Zhao J, et al. IL1α antagonizes IL1β and promotes adaptive immune rejection of malignant tumors. Cancer Immunol Res. 2020;8:660–71.
van der Sluis TC, Sluijter M, van Duikeren S, West BL, Melief CJM, Arens R, et al. Therapeutic peptide vaccine-induced CD8 T cells strongly modulate intratumoral macrophages required for tumor regression. Cancer Immunol Res. 2015;3:1042–51.
Etzerodt A, Tsalkitzi K, Maniecki M, Damsky W, Delfini M, Baudoin E, et al. Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell–mediated tumor regression. J Exp Med. 2019;216:2394–411.
Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A, Tomura M, et al. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity. 2011;34:85–95.
المشرفين على المادة: 0 (Gsdmd protein, mouse)
0 (IL1B protein, mouse)
0 (Inflammasomes)
0 (Interleukin-1beta)
0 (Intracellular Signaling Peptides and Proteins)
0 (Phosphate-Binding Proteins)
تواريخ الأحداث: Date Created: 20201228 Date Completed: 20210726 Latest Revision: 20210726
رمز التحديث: 20240628
DOI: 10.1158/2326-6066.CIR-20-0431
PMID: 33361087
قاعدة البيانات: MEDLINE
الوصف
تدمد:2326-6074
DOI:10.1158/2326-6066.CIR-20-0431