دورية أكاديمية

Does Blast Exposure to the Torso Cause a Blood Surge to the Brain?

التفاصيل البيبلوغرافية
العنوان: Does Blast Exposure to the Torso Cause a Blood Surge to the Brain?
المؤلفون: Rubio JE; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States., Skotak M; Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States.; Blast Induced Neurotrauma Division, Walter Reed Army Institute of Research, Silver Spring, MD, United States., Alay E; Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States., Sundaramurthy A; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States., Subramaniam DR; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States., Kote VB; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States., Yeoh S; Department of Biomedical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States., Monson K; Department of Biomedical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States.; Department of Mechanical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States., Chandra N; Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States., Unnikrishnan G; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States., Reifman J; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.
المصدر: Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2020 Dec 17; Vol. 8, pp. 573647. Date of Electronic Publication: 2020 Dec 17 (Print Publication: 2020).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Media S.A Country of Publication: Switzerland NLM ID: 101632513 Publication Model: eCollection Cited Medium: Print ISSN: 2296-4185 (Print) Linking ISSN: 22964185 NLM ISO Abbreviation: Front Bioeng Biotechnol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Media S.A., [2013]-
مستخلص: The interaction of explosion-induced blast waves with the torso is suspected to contribute to brain injury. In this indirect mechanism, the wave-torso interaction is assumed to generate a blood surge, which ultimately reaches and damages the brain. However, this hypothesis has not been comprehensively and systematically investigated, and the potential role, if any, of the indirect mechanism in causing brain injury remains unclear. In this interdisciplinary study, we performed experiments and developed mathematical models to address this knowledge gap. First, we conducted blast-wave exposures of Sprague-Dawley rats in a shock tube at incident overpressures of 70 and 130 kPa, where we measured carotid-artery and brain pressures while limiting exposure to the torso. Then, we developed three-dimensional (3-D) fluid-structure interaction (FSI) models of the neck and cerebral vasculature and, using the measured carotid-artery pressures, performed simulations to predict mass flow rates and wall shear stresses in the cerebral vasculature. Finally, we developed a 3-D finite element (FE) model of the brain and used the FSI-computed vasculature pressures to drive the FE model to quantify the blast-exposure effects in the brain tissue. The measurements from the torso-only exposure experiments revealed marginal increases in the peak carotid-artery overpressures (from 13.1 to 28.9 kPa). Yet, relative to the blast-free, normotensive condition, the FSI simulations for the blast exposures predicted increases in the peak mass flow rate of up to 255% at the base of the brain and increases in the wall shear stress of up to 289% on the cerebral vasculature. In contrast, our simulations suggest that the effect of the indirect mechanism on the brain-tissue-strain response is negligible (<1%). In summary, our analyses show that the indirect mechanism causes a sudden and abundant stream of blood to rapidly propagate from the torso through the neck to the cerebral vasculature. This blood surge causes a considerable increase in the wall shear stresses in the brain vasculature network, which may lead to functional and structural effects on the cerebral veins and arteries, ultimately leading to vascular pathology. In contrast, our findings do not support the notion of strain-induced brain-tissue damage due to the indirect mechanism.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2020 Rubio, Skotak, Alay, Sundaramurthy, Subramaniam, Kote, Yeoh, Monson, Chandra, Unnikrishnan and Reifman.)
References: J Neuropathol Exp Neurol. 2011 May;70(5):399-416. (PMID: 21487304)
J Intern Med. 2006 Apr;259(4):381-92. (PMID: 16594906)
Circulation. 1980 Feb;61(2):345-52. (PMID: 7351060)
J Biomech Eng. 2018 Mar 19;:. (PMID: 29560495)
Acta Physiol Scand. 1956 Sep 26;37(2-3):204-14. (PMID: 13361900)
Am J Physiol. 1956 Jan;184(1):119-26. (PMID: 13283101)
Am J Physiol. 1955 Jun;181(3):471-6. (PMID: 13238584)
J Neurotrauma. 2014 Jul 15;31(14):1292-304. (PMID: 24673157)
J Trauma. 1990 Mar;30(3):295-306. (PMID: 2313748)
J R Soc Interface. 2011 Oct 7;8(63):1379-85. (PMID: 21733876)
Pflugers Arch. 1999 Mar;437(4):617-23. (PMID: 10089576)
Hellenic J Cardiol. 2005 Jan-Feb;46(1):9-15. (PMID: 15807389)
J Neurotrauma. 2003 Oct;20(10):1039-49. (PMID: 14588120)
Ann Biomed Eng. 2019 Sep;47(9):2033-2044. (PMID: 31054004)
Acta Neuropathol Commun. 2019 Jan 9;7(1):6. (PMID: 30626447)
J Neurotrauma. 2012 Sep;29(13):2352-64. (PMID: 22620716)
J Cereb Blood Flow Metab. 2012 Sep;32(9):1659-76. (PMID: 22781330)
J Biomech Eng. 2004 Apr;126(2):226-36. (PMID: 15179853)
Circulation. 1984 Jul;70(1):86-101. (PMID: 6723014)
J Biomech Eng. 2009 Jun;131(6):061007. (PMID: 19449961)
Ann Biomed Eng. 2008 Oct;36(10):1681-9. (PMID: 18654851)
Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2506-12. (PMID: 17237248)
Microcirculation. 2014 Oct;21(7):628-39. (PMID: 24703006)
Acta Neuropathol Commun. 2014 Jun 17;2:67. (PMID: 24938728)
J Neurotrauma. 2011 Jan;28(1):85-94. (PMID: 21091267)
J Mech Behav Biomed Mater. 2017 Apr;68:88-102. (PMID: 28157598)
Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3290-300. (PMID: 17873018)
Front Neurol. 2010 Dec 10;1:151. (PMID: 21206523)
J Acoust Soc Am. 2001 Jan;109(1):390-6. (PMID: 11206168)
Sci Rep. 2019 May 22;9(1):7717. (PMID: 31118451)
Front Neurol. 2015 Apr 08;6:72. (PMID: 25904891)
J Biomech Eng. 2000 Dec;122(6):615-22. (PMID: 11192383)
Br J Pharmacol. 2011 Jul;163(6):1237-49. (PMID: 21426319)
Sci Rep. 2018 Jul 27;8(1):11344. (PMID: 30054495)
Crit Care Med. 1981 May;9(5):377-8. (PMID: 7214961)
Ann Biomed Eng. 2011 Oct;39(10):2550-9. (PMID: 21735320)
J Trauma. 1990 Mar;30(3):281-94. (PMID: 2313747)
J Neurosci Methods. 2011 Jan 30;195(1):61-6. (PMID: 21129403)
J Neurotrauma. 2018 Jan 15;35(2):375-392. (PMID: 29160141)
J Biomech Eng. 2018 Feb 1;140(2):. (PMID: 29222564)
J Cereb Blood Flow Metab. 2009 Apr;29(4):726-37. (PMID: 19142189)
J Biomech. 2006;39(15):2810-8. (PMID: 16289515)
Hypertension. 1984 May-Jun;6(3):408-19. (PMID: 6735460)
Sci Rep. 2018 Jun 6;8(1):8681. (PMID: 29875451)
Acta Neuropathol Commun. 2013 Aug 14;1:51. (PMID: 24252601)
Stroke. 2013 Jan;44(1):177-81. (PMID: 23204051)
Sci Transl Med. 2012 May 16;4(134):134ra60. (PMID: 22593173)
J Neurotrauma. 2017 Apr 15;34(8):1589-1602. (PMID: 27855566)
PLoS One. 2016 Sep 07;11(9):e0161597. (PMID: 27603017)
J Neurotrauma. 2012 Jul 1;29(10):1970-81. (PMID: 22489674)
J Cereb Blood Flow Metab. 2014 Apr;34(4):578-84. (PMID: 24473483)
Front Neurol. 2019 Jul 30;10:766. (PMID: 31417481)
فهرسة مساهمة: Keywords: blast overpressure; fluid-structure interaction; indirect mechanism; shock tube; traumatic brain injury
تواريخ الأحداث: Date Created: 20210104 Latest Revision: 20210105
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7773947
DOI: 10.3389/fbioe.2020.573647
PMID: 33392161
قاعدة البيانات: MEDLINE
الوصف
تدمد:2296-4185
DOI:10.3389/fbioe.2020.573647