دورية أكاديمية

Genetically Encoded Photosensitizer for Destruction of Protein or Cell Function.

التفاصيل البيبلوغرافية
العنوان: Genetically Encoded Photosensitizer for Destruction of Protein or Cell Function.
المؤلفون: Riani YD; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan., Matsuda T; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan., Nagai T; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan. ng1@sanken.osaka-u.ac.jp.
المصدر: Advances in experimental medicine and biology [Adv Exp Med Biol] 2021; Vol. 1293, pp. 265-279.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 0121103 Publication Model: Print Cited Medium: Print ISSN: 0065-2598 (Print) Linking ISSN: 00652598 NLM ISO Abbreviation: Adv Exp Med Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
مواضيع طبية MeSH: Photosensitizing Agents*, Cell Physiological Phenomena/*radiation effects , Chromophore-Assisted Light Inactivation/*methods , Proteins/*metabolism , Proteins/*radiation effects, Optogenetics ; Photochemotherapy
مستخلص: There are several paths when excited molecules return to the ground state. In the case of fluorescent molecules, the dominant path is fluorescence emission that is greatly contributing to bioimaging. Meanwhile, photosensitizers transfer electron or energy from chromophore to the surrounding molecules, including molecular oxygen. Generated reactive oxygen species has potency to attack other molecules by oxidation. In this chapter, we introduce the chromophore-assisted light inactivation (CALI) method using a photosensitizer to inactivate proteins in a spatiotemporal manner and development of CALI tools, which is useful for investigation of protein functions and dynamics, by inactivation of the target molecules. Moreover, photosensitizers with high efficiency make it possible optogenetic control of cell ablation in living organisms and photodynamic therapy. Further development of photosensitizers with different excitation wavelengths will contribute to the investigation of multiple proteins or cell functions through inactivation in the different positions and timings.
References: Baier J et al (2006) Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J 91:1452–1459. (PMID: 167512341518628)
Buckley C et al (2017) Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish. Sci Rep 7:5096. (PMID: 286986775506062)
Bulina ME et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99. (PMID: 16369538)
Carpentier P, Violot S, Blanchoin L, Bourgeois D (2009) Structural basis for the phototoxicity of the fluorescent protein KillerRed. FEBS Lett 583:2839–2842. (PMID: 19646983)
De Rosny E, Carpentier P (2012) GFP-like phototransformation mechanisms in the cytotoxic fluorescent protein KillerRed unraveled by structural and spectroscopic investigations. J Am Chem Soc 134:18015–18021. (PMID: 23025285)
Diamond P et al (1993) Fasciclin I and II have distinct roles in the development of grasshopper pioneer neurons. Neuron 11:409–421. (PMID: 8398136)
Endres S et al (2018) An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep 8:15021. (PMID: 303019176177443)
He J et al (2016) A genetically targetable near-infrared photosensitizer. Nat Methods 13:263–268. (PMID: 268086694916159)
Hearps AC et al (2007) The biarsenical dye Lumio exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells. J Fluoresc 17:593–597. (PMID: 17805945)
Hoffman-Kim D et al (2002) pp60(c-src) is a negative regulator of laminin-1-mediated neurite outgrowth in chick sensory neurons. Mol Cell Neurosci 21:81–93. (PMID: 12359153)
Jacobson K, Rajfur Z, Vitriol E, Hahn K (2008) Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol 18:443–450. (PMID: 187068124445427)
Jarvela T, Linstedt AD (2014) Isoform-specific tethering links the Golgi ribbon to maintain compartmentalization. Mol Biol Cell 25:133–144. (PMID: 242278843873884)
Jay DG (1988) Selective destruction of protein function by chromophore-assisted laser inactivation. Proc Natl Acad Sci 85:5454–5458. (PMID: 3399501)
Jay DG, Keshishian H (1990) Laser inactivation of fasciclin I disrupts axon adhesion of grasshopper pioneer neurons. Nature 348:548–550. (PMID: 2247163)
Jewhurst K, Levin M, McLaughlin KA (2014) Optogenetic control of apoptosis in targeted tissues of Xenopus laevis embryos. J Cell Death 7:25–31. (PMID: 253744614213186)
Junqueira JC et al (2010) Antimicrobial photodynamic therapy: photodynamic antimicrobial effects of malachite green on staphylococcus, enterobacteriaceae, and Candida. Photomed Laser Surg 28:67–72.
Keppler A, Ellenberg J (2009) Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells. ACS Chem Biol 4:127–138. (PMID: 19191588)
Kobayashi J et al (2013) A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed. Neurosci Lett 548:261–264. (PMID: 23748043)
Lamb RF et al (1997) Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr Biol 7:682–688. (PMID: 9285722)
Laustriat G (1986) Molecular mechanisms of photosensitization. Biochimie 68:771–778. (PMID: 3019431)
Lee J, Yu P, Xiao PX, Kodadek T (2008) A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru(II) tris-bipyridyl as an unusually efficient “warhead”. Mol BioSyst 4:59–65. (PMID: 18075676)
Li W, Stuurman N, Ou G (2012) Chromophore-assisted laser inactivation in neural development. Neurosci Bull 28:333–341. (PMID: 228330335561893)
Liang L et al (2017) Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles. Acta Biomater 51:461–470. (PMID: 28063989)
Liao JC, Roider J, Jay DG (1994) Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc Natl Acad Sci 91:2659–2663. (PMID: 8146171)
Liao ZX, Li YC, Lu HM, Sung HW (2014) A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials 35:500–508. (PMID: 24112805)
Lin JY et al (2013) Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241–253. (PMID: 238899313804158)
Linden KG, Liao JC, Jay DG (1992) Spatial specificity of chromophore assisted laser inactivation of protein function. Biophys J 61:956–962. (PMID: 15815041260354)
Makhijani K et al (2017) Precision optogenetic tool for selective single- and multiple-cell ablation in a live animal model system. Cell Chem Biol 24:110–119. (PMID: 280656555304914)
Marek KW, Davis GW (2002) Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36:805–813. (PMID: 12467585)
Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314. (PMID: 16155565)
Miller JP, Selverston A (1979) Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206:702–704. (PMID: 386514)
Muthiah M et al (2014) Intracellular delivery and activation of the genetically encoded photosensitizer killer red by quantum dots encapsulated in polymeric micelles. Colloids Surf B Biointerfaces 116:284–294. (PMID: 24495459)
Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci 100:13940–13945. (PMID: 14615590)
Onukwufor JO et al (2020) Quantification of reactive oxygen species production by the red fluorescent proteins KillerRed, SuperNova and mCherry. Free Radic Biol Med 147:1–7. (PMID: 31841676)
Pimenta FM et al (2013) Oxygen-dependent photochemistry and photophysics of "miniSOG," a protein-encased flavin. Photochem Photobiol 89:1116–1126. (PMID: 23869989)
Pletnev S et al (2009) J Biol Chem 284:32028–32039. (PMID: 197379382797274)
Pletneva NV et al (2015) Crystal structure of phototoxic orange fluorescent proteins with a tryptophan-based chromophore. PLoS One 10:e0145740. (PMID: 266993664689385)
Rajfur Z, Roy P, Otey C, Romer L, Jacobson K (2002) Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol 4:286–293. (PMID: 11912490)
Riani YD, Matsuda T, Takemoto K, Nagai T (2018) Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation. BMC Biol 16:50. (PMID: 297125735928576)
Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B Biol 96:1–8.
Ruiz-González et al (2013) Singlet oxygen generation by the genetically encoded tag miniSOG. J Am Chem Soc 135:9564–9567. (PMID: 23781844)
Ryskova L, Buchta V, Slezak R (2010) Photodynamic antimicrobial therapy. Cent Eur J Biol 5:400–406.
Ryumina AP et al (2013) Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells. Biochim Biophys Acta 1830:5059–5067. (PMID: 23876295)
Ryumina AP et al (2016) Lysosome-associated miniSOG as a photosensitizer for mammalian cells. BioTechniques 61:92–94. (PMID: 27528074)
Sarkisyan KS et al (2015) KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PLoS One 10:e0145287. (PMID: 266793004683004)
Schmucker D, Su AL, Beermann A, Jäckle H, Jay DG (1994) Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of drosophila. Proc Natl Acad Sci U S A 91:2664–2668. (PMID: 814617243430)
Serebrovskaya EO et al (2009) Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc Natl Acad Sci U S A 106:9221–9225. (PMID: 194582512695119)
Serebrovskaya EO et al (2014) Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed. J Biomed Opt 19:071403. (PMID: 24365992)
Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239. (PMID: 13911999)
Shirmanova M et al (2015) Towards PDT with genetically encoded photosensitizer KillerRed: a comparison of continuous and pulsed laser regimens in an animal tumor model. PLoS One 10:e0144617. (PMID: 266570014686120)
Shirmanova MV et al (2013) Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice. J Biophotonics 6:283–290. (PMID: 22696211)
Shu X et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041. (PMID: 214837213071375)
Stroffekova K, Proenza C, Beam KG (2001) The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins. Pflugers Arch 442:859–866. (PMID: 11680618)
Surrey T et al (1998) Chromophore-assisted light inactivation and self-organization of microtubules and motors. Proc Natl Acad Sci U S A 95:4293–4298. (PMID: 953973022482)
Takemoto K et al (2011) Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells. ACS Chem Biol 6:401–406. (PMID: 21226520)
Takemoto K et al (2013) SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci Rep 3:2629. (PMID: 240431323775092)
Takemoto K et al (2016) Optical inactivation of synaptic AMPA receptors erases fear memory. Nat Biotechnol 35:38–47. (PMID: 27918547)
Tanabe T et al (2005) Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nat Methods 2:503–505. (PMID: 15973419)
Teh C, Korzh V (2014) In vivo optogenetics for light-induced oxidative stress in transgenic zebrafish expressing the KillerRed photosensitizer protein. Methods Mol Biol 1148:229–238. (PMID: 24718805)
Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 21:1505–1508. (PMID: 14625562)
Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. (PMID: 9759496)
Westberg M, Bregnhøj M, Etzerodt M, Ogilby PR (2017) No photon wasted: an efficient and selective singlet oxygen photosensitizing protein. J Phys Chem B 121:9366–9371. (PMID: 28892628)
Westberg M, Holmegaard L, Pimenta FM, Etzerodt M, Ogilby PR (2015) Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J Am Chem Soc 137:1632–1642. (PMID: 25575190)
Williams DC et al (2013) Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Rep 5:553–563. (PMID: 24209746)
Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286. (PMID: 18421291)
Wojtovich AP, Wei AY, Sherman TA, Foster TH, Nehrke K (2016) Chromophore-assisted light inactivation of mitochondrial electron transport chain complex II in Caenorhabditis elegans. Sci Rep 6:29695.
فهرسة مساهمة: Keywords: CALI; Cell ablation; Fluorescent protein; Photosensitizer; Protein destruction; Reactive oxygen species (ROS)
المشرفين على المادة: 0 (Photosensitizing Agents)
0 (Proteins)
تواريخ الأحداث: Date Created: 20210105 Date Completed: 20210205 Latest Revision: 20210205
رمز التحديث: 20240628
DOI: 10.1007/978-981-15-8763-4_16
PMID: 33398819
قاعدة البيانات: MEDLINE
الوصف
تدمد:0065-2598
DOI:10.1007/978-981-15-8763-4_16