دورية أكاديمية

SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) prevents cardiac remodeling after myocardial infarction through ERK/SMAD signaling pathway.

التفاصيل البيبلوغرافية
العنوان: SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) prevents cardiac remodeling after myocardial infarction through ERK/SMAD signaling pathway.
المؤلفون: Lu YG; Department of Clinical Laboratory, Hebei General Hospital, No. 348, Heping Road, Xinhua District, Shijiazhuang, 050051, China., Tan H; Department of Clinical Laboratory, Hebei General Hospital, No. 348, Heping Road, Xinhua District, Shijiazhuang, 050051, China., Ma Q; Department of Clinical Laboratory, Hebei General Hospital, No. 348, Heping Road, Xinhua District, Shijiazhuang, 050051, China., Li XX; Department of Clinical Laboratory, Hebei General Hospital, No. 348, Heping Road, Xinhua District, Shijiazhuang, 050051, China., Cui J; Department of Clinical Laboratory, Hebei General Hospital, No. 348, Heping Road, Xinhua District, Shijiazhuang, 050051, China., Zhang X; Department of Clinical Laboratory, Hebei North University, Zhangjiakou, China., Liang XL; Department of Clinical Laboratory, Hebei North University, Zhangjiakou, China., Tie YQ; Department of Clinical Laboratory, Hebei General Hospital, No. 348, Heping Road, Xinhua District, Shijiazhuang, 050051, China. T200410Y@163.com.
المصدر: Human cell [Hum Cell] 2021 Mar; Vol. 34 (2), pp. 325-334. Date of Electronic Publication: 2021 Jan 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Japan NLM ID: 8912329 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-0774 (Electronic) Linking ISSN: 09147470 NLM ISO Abbreviation: Hum Cell Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : Tokyo : Springer
Original Publication: Tōkyō-to : Hito Saibō Kenkyūkai : Kanishobo, Shōwa 63-nen [1988]-
مواضيع طبية MeSH: MAP Kinase Signaling System/*drug effects , Myocardial Infarction/*genetics , Myocardial Infarction/*pathology , SH2 Domain-Containing Protein Tyrosine Phosphatases/*pharmacology , Signal Transduction/*drug effects , Signal Transduction/*genetics , Smad2 Protein/*metabolism , Smad3 Protein/*metabolism , Ventricular Remodeling/*drug effects, Animals ; Disease Models, Animal ; Fibrosis/genetics ; MAP Kinase Signaling System/genetics ; Mice, Inbred C57BL ; Myocardium/pathology ; SH2 Domain-Containing Protein Tyrosine Phosphatases/administration & dosage ; Mice
مستخلص: In this study, we aimed to investigate the role of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) in cardiac remodeling after myocardial infarction (MI) and explore the underlying molecular mechanism. MI model was established by ligation of the left anterior descending coronary artery. C57/BL6J mice were randomly administered with 3.0 mg/kg/day PHPS1 (PHPS1-treated group) or normal saline (model group) by intraperitoneal injection. After 4 weeks of infusion, the effects of PHPS1 on cardiac remodeling were evaluated. Echocardiography results showed that PHPS1 treatment aggravated the MI-induced deterioration of cardiac function, with worse cardiac function parameters. PHPS1 treatment significantly increased the infarcted area, as well as the fibrotic area and the expression of collagen I and collagen III. Western blots and immunofluorescence staining showed that PHPS1 treatment up-regulated the expression of p-GRK2, p-SMAD2/3 and p-ERK1/2, while U0126 reversed the effect of PHPS1. The present study indicated that PHPS1 treatment contributed to myocardial fibrosis and infarction by activating ERK/SMAD signaling pathway, suggesting that SHP-2 may be a promising treatment target for cardiac remodeling after MI.
References: Khan M, Kwiatkowski P, Rivera BK, Kuppusamy P. Oxygen and oxygenation in stem-cell therapy for myocardial infarction. Life Sci. 2010;87(9–10):269–74. (PMID: 10.1016/j.lfs.2010.06.013)
Martínez-Martínez E, Buonafine M, Boukhalfa I, Ibarrola J, Fernández-Celis A, Kolkhof P, et al. Aldosterone target NGAL (Neutrophil Gelatinase-Associated Lipocalin) is involved in cardiac remodeling after myocardial infarction through NFκB pathway. Hypertension (Dallas, Tex: 1979). 2017;70(6):1148–56. https://doi.org/10.1161/hypertensionaha.117.09791 . (PMID: 10.1161/hypertensionaha.117.09791)
Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65. https://doi.org/10.1038/nrcardio.2014.28 . (PMID: 10.1038/nrcardio.2014.28246630914407144)
Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol. 2018;175(9):1377–400. https://doi.org/10.1111/bph.14155 . (PMID: 10.1111/bph.14155293944995901181)
Frangogiannis NG. The role of transforming growth factor (TGF)-β in the infarcted myocardium. J Thorac Dis. 2017;9(Suppl 1):S52–s63. https://doi.org/10.21037/jtd.2016.11.19 . (PMID: 10.21037/jtd.2016.11.19284469685383562)
Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 2016;7(1):1–14. (PMID: 10.1038/ncomms12260)
Moore-Morris T, Guimarães-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Investig. 2014;124(7):2921–34. https://doi.org/10.1172/jci74783 . (PMID: 10.1172/jci7478324937432)
Liu Y, Baumgardt SL, Fang J, Shi Y, Qiao S, Bosnjak ZJ, et al. Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling. Sci Rep. 2017;7(1):3093. https://doi.org/10.1038/s41598-017-03234-6 . (PMID: 10.1038/s41598-017-03234-6285965785465102)
Hu J, Zhang L, Zhao Z, Zhang M, Lin J, Wang J, et al. OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through Mst1 suppression. Biochim Biophys Acta. 2017;1863(8):1951–61. https://doi.org/10.1016/j.bbadis.2016.11.004 . (PMID: 10.1016/j.bbadis.2016.11.004)
Niogret C, Birchmeier W, Guarda G. SHP-2 in lymphocytes' cytokine and inhibitory receptor signaling. Front Immunol. 2019;10:2468. https://doi.org/10.3389/fimmu.2019.02468 . (PMID: 10.3389/fimmu.2019.02468317089216823243)
Tzouvelekis A, Yu G, Herazo-maya J, Xylourgidis N, Herzog E, Bennett A, et al. SH2 domain-containing phosphatase-SHP-2 is a novel regulator of fibroblast homeostasis in Pulmonary Fibrosis. QJM. 2016;109(suppl_1):S20-S.
Liu X, Li Y, Zhang Y, Lu Y, Guo W, Liu P, et al. SHP-2 promotes the maturation of oligodendrocyte precursor cells through Akt and ERK1/2 signaling in vitro. PLoS ONE. 2011;6(6):e21058. https://doi.org/10.1371/journal.pone.0021058 . (PMID: 10.1371/journal.pone.0021058217015833118803)
Bandyopadhyay B, Han A, Dai J, Fan J, Li Y, Chen M, et al. TbetaRI/Alk5-independent TbetaRII signaling to ERK1/2 in human skin cells according to distinct levels of TbetaRII expression. J Cell Sci. 2011;124(Pt 1):19–24. https://doi.org/10.1242/jcs.076505 . (PMID: 10.1242/jcs.07650521172820)
Otsuka M, Goto K, Tsuchiya S, Aramaki Y. Phosphatidylserine-specific receptor contributes to TGF-beta production in macrophages through a MAP kinase. ERK Biol Pharm Bull. 2005;28(9):1707–10. https://doi.org/10.1248/bpb.28.1707 . (PMID: 10.1248/bpb.28.170716141544)
Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IM. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol. 1999;31(3):667–78. https://doi.org/10.1006/jmcc.1998.0902 . (PMID: 10.1006/jmcc.1998.090210198196)
Odekerken JC, Walenkamp GH, Brans BT, Welting TJ, Arts JJ. The longitudinal assessment of osteomyelitis development by molecular imaging in a rabbit model. Biomed Res Int. 2014;2014:424652. https://doi.org/10.1155/2014/424652 . (PMID: 10.1155/2014/424652252952604177738)
Patel M, Rojavin Y, Jamali AA, Wasielewski SJ, Salgado CJ. Animal models for the study of osteomyelitis. Semin Plast Surg. 2009;23(2):148–54. https://doi.org/10.1055/s-0029-1214167 . (PMID: 10.1055/s-0029-1214167205677372884898)
Nishiya D, Omura T, Shimada K, Matsumoto R, Kusuyama T, Enomoto S, et al. Effects of erythropoietin on cardiac remodeling after myocardial infarction. J Pharmacol Sci. 2006;101(1):31–9. https://doi.org/10.1254/jphs.fp0050966 . (PMID: 10.1254/jphs.fp005096616717399)
Shen S, Jiang H, Bei Y, Zhang J, Zhang H, Zhu H, et al. Qiliqiangxin attenuates adverse cardiac remodeling after myocardial infarction in ovariectomized mice via activation of PPARγ. Cell Physiol Biochem. 2017;42(3):876–88. https://doi.org/10.1159/000478641 . (PMID: 10.1159/00047864128647730)
Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Fact (Chur, Switzerland). 2011;29(5):196–202. https://doi.org/10.3109/08977194.2011.595714 . (PMID: 10.3109/08977194.2011.595714)
Yu L, Hébert MC, Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 2002;21(14):3749–59. https://doi.org/10.1093/emboj/cdf366 . (PMID: 10.1093/emboj/cdf36612110587126112)
Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91. https://doi.org/10.1146/annurev.biochem.67.1.753 . (PMID: 10.1146/annurev.biochem.67.1.7539759503)
Im YN, Lee YD, Park JS, Kim HK, Im SY, Song HR, et al. GPCR Kinase (GRK)-2 is a key negative regulator of itch: l-glutamine attenuates itch via a rapid induction of GRK2 in an ERK-dependent way. J Invest Dermatol. 2018;138(8):1834–42. https://doi.org/10.1016/j.jid.2018.02.036 . (PMID: 10.1016/j.jid.2018.02.03629530536)
Zehender A, Huang J, Györfi AH, Matei AE, Trinh-Minh T, Xu X, et al. The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat Commun. 2018;9(1):3259. https://doi.org/10.1038/s41467-018-05768-3 . (PMID: 10.1038/s41467-018-05768-3301082156092362)
Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283(12):2219–32. https://doi.org/10.1111/febs.13665 . (PMID: 10.1111/febs.1366526807763)
Fiorentini C, Savoia P, Savoldi D, Barbon A, Missale C. Persistent activation of the D1R/Shp-2/Erk1/2 pathway in l-DOPA-induced dyskinesia in the 6-hydroxy-dopamine rat model of Parkinson's disease. Neurobiol Dise. 2013;54:339–48. https://doi.org/10.1016/j.nbd.2013.01.005 . (PMID: 10.1016/j.nbd.2013.01.005)
Rosário M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 2003;13(6):328–35. https://doi.org/10.1016/s0962-8924(03)00104-1 . (PMID: 10.1016/s0962-8924(03)00104-112791299)
Ivins Zito C, Kontaridis MI, Fornaro M, Feng GS, Bennett AM. SHP-2 regulates the phosphatidylinositide 3'-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol. 2004;199(2):227–36. https://doi.org/10.1002/jcp.10446 . (PMID: 10.1002/jcp.1044615040005)
Chen J, Cao Z, Guan J. SHP2 inhibitor PHPS1 protects against atherosclerosis by inhibiting smooth muscle cell proliferation. BMC Cardiovasc Disord. 2018;18(1):72. https://doi.org/10.1186/s12872-018-0816-2 . (PMID: 10.1186/s12872-018-0816-2297031605923012)
Salmond RJ, Alexander DR. SHP2 forecast for the immune system: fog gradually clearing. Trends Immunol. 2006;27(3):154–60. https://doi.org/10.1016/j.it.2006.01.007 . (PMID: 10.1016/j.it.2006.01.00716458607)
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. https://doi.org/10.1084/jem.20112741 . (PMID: 10.1084/jem.20112741226413833371732)
Zannettino AC, Roubelakis M, Welldon KJ, Jackson DE, Simmons PJ, Bendall LJ, et al. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: identification, molecular cloning and effects on cell migration. Biochem J. 2003;370(Pt 2):537–49. https://doi.org/10.1042/bj20020935 . (PMID: 10.1042/bj20020935124106371223174)
معلومات مُعتمدة: 2018135809-2 Prevention and Control of Geriatric Diseases in 2018
فهرسة مساهمة: Keywords: Cardiac remodeling; ERK1/2/GRK2/SMAD2/3 pathway; Myocardial infarction; PHPS1; SH2 domain-containing protein tyrosine phosphatase-2
المشرفين على المادة: 0 (Smad2 Protein)
0 (Smad2 protein, mouse)
0 (Smad3 Protein)
0 (Smad3 protein, mouse)
EC 3.1.3.48 (SH2 Domain-Containing Protein Tyrosine Phosphatases)
تواريخ الأحداث: Date Created: 20210108 Date Completed: 20210806 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1007/s13577-020-00430-x
PMID: 33415691
قاعدة البيانات: MEDLINE
الوصف
تدمد:1749-0774
DOI:10.1007/s13577-020-00430-x