دورية أكاديمية

Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments.

التفاصيل البيبلوغرافية
العنوان: Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments.
المؤلفون: Dunham EC; Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717., Dore JE; Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717., Skidmore ML; Department of Earth Sciences, Montana State University, Bozeman, MT 59717., Roden EE; Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706., Boyd ES; Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717; eboyd@montana.edu.
المصدر: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Jan 12; Vol. 118 (2). Date of Electronic Publication: 2020 Dec 21.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : National Academy of Sciences
مواضيع طبية MeSH: Ecosystem* , Geological Phenomena*, Hydrogen/*metabolism , Ice Cover/*microbiology, Carbon Cycle ; Carbon Dioxide/metabolism ; Iceland ; Metagenome ; Oxidation-Reduction
مستخلص: Life in environments devoid of photosynthesis, such as on early Earth or in contemporary dark subsurface ecosystems, is supported by chemical energy. How, when, and where chemical nutrients released from the geosphere fuel chemosynthetic biospheres is fundamental to understanding the distribution and diversity of life, both today and in the geologic past. Hydrogen (H 2 ) is a potent reductant that can be generated when water interacts with reactive components of mineral surfaces such as silicate radicals and ferrous iron. Such reactive mineral surfaces are continually generated by physical comminution of bedrock by glaciers. Here, we show that dissolved H 2 concentrations in meltwaters from an iron and silicate mineral-rich basaltic glacial catchment were an order of magnitude higher than those from a carbonate-dominated catchment. Consistent with higher H 2 abundance, sediment microbial communities from the basaltic catchment exhibited significantly shorter lag times and faster rates of net H 2 oxidation and dark carbon dioxide (CO 2 ) fixation than those from the carbonate catchment, indicating adaptation to use H 2 as a reductant in basaltic catchments. An enrichment culture of basaltic sediments provided with H 2 , CO 2 , and ferric iron produced a chemolithoautotrophic population related to Rhodoferax ferrireducens with a metabolism previously thought to be restricted to (hyper)thermophiles and acidophiles. These findings point to the importance of physical and chemical weathering processes in generating nutrients that support chemosynthetic primary production. Furthermore, they show that differences in bedrock mineral composition can influence the supplies of nutrients like H 2 and, in turn, the diversity, abundance, and activity of microbial inhabitants.
Competing Interests: The authors declare no competing interest.
(Copyright © 2021 the Author(s). Published by PNAS.)
References: Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6346-51. (PMID: 23538304)
Geobiology. 2018 Nov;16(6):674-692. (PMID: 30035368)
Int J Syst Evol Microbiol. 2002 May;52(Pt 3):719-728. (PMID: 12054231)
Biochim Biophys Acta. 2016 Jul;1857(7):958-70. (PMID: 26808919)
J Bacteriol. 2006 Feb;188(4):1473-88. (PMID: 16452431)
Environ Microbiol. 2017 Feb;19(2):524-534. (PMID: 27489963)
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17666-17672. (PMID: 31427518)
Methods Enzymol. 2005;397:58-77. (PMID: 16260285)
Environ Microbiol Rep. 2019 Apr;11(2):165-172. (PMID: 30507067)
Environ Microbiol. 2019 Nov;21(11):4180-4195. (PMID: 31397054)
Appl Environ Microbiol. 2014 Oct;80(19):6146-53. (PMID: 25085483)
Environ Microbiol. 2019 Oct;21(10):3816-3830. (PMID: 31276280)
Front Microbiol. 2014 Nov 26;5:657. (PMID: 25505896)
Trends Microbiol. 2005 Sep;13(9):405-10. (PMID: 16054814)
Environ Sci Technol. 2001 Apr 1;35(7):1556-9. (PMID: 11348102)
J Mol Microbiol Biotechnol. 2002 May;4(3):255-62. (PMID: 11931556)
J Ind Microbiol Biotechnol. 2008 Oct;35(10):1139-47. (PMID: 18633656)
Science. 2017 Apr 14;356(6334):155-159. (PMID: 28408597)
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10497-502. (PMID: 26240343)
Biochem Soc Trans. 2012 Dec 1;40(6):1261-7. (PMID: 23176465)
Science. 2005 Mar 4;307(5714):1428-34. (PMID: 15746419)
Environ Microbiol Rep. 2014 Dec;6(6):776-85. (PMID: 25139405)
PLoS One. 2011;6(8):e23742. (PMID: 21897856)
ISME J. 2017 Nov;11(11):2599-2610. (PMID: 28777381)
FEMS Microbiol Ecol. 2016 May;92(5):fiw069. (PMID: 27037359)
Appl Environ Microbiol. 1987 Apr;53(4):791-6. (PMID: 3579282)
Front Microbiol. 2018 Feb 21;9:237. (PMID: 29515536)
Int J Syst Evol Microbiol. 2015 Jun;65(Pt 6):1779-1785. (PMID: 26184665)
ISME J. 2015 Nov;9(11):2400-12. (PMID: 25871933)
Biochim Biophys Acta. 2015 Jun;1853(6):1350-69. (PMID: 25461840)
Microb Ecol. 2004 May;47(4):329-40. (PMID: 14994176)
Environ Microbiol. 2018 Jul;20(7):2523-2537. (PMID: 29749696)
ISME J. 2013 Jul;7(7):1402-12. (PMID: 23486249)
Int J Syst Evol Microbiol. 2003 May;53(Pt 3):669-673. (PMID: 12807184)
Nature. 2017 Dec 21;552(7685):400-403. (PMID: 29211716)
ISME J. 2010 Dec;4(12):1485-95. (PMID: 20535223)
Front Microbiol. 2017 Jul 28;8:1407. (PMID: 28804477)
Appl Environ Microbiol. 2011 Jul;77(14):4778-87. (PMID: 21622799)
Int J Syst Evol Microbiol. 2011 Sep;61(Pt 9):2186-2190. (PMID: 20935085)
Environ Microbiol Rep. 2010 Oct;2(5):685-92. (PMID: 23766256)
Extremophiles. 2020 Mar;24(2):329-337. (PMID: 31980944)
Appl Environ Microbiol. 2002 Apr;68(4):1735-42. (PMID: 11916691)
Appl Environ Microbiol. 2000 Aug;66(8):3214-20. (PMID: 10919772)
Science. 1998 Aug 28;281(5381):1342-6. (PMID: 9721097)
Appl Environ Microbiol. 2015 Dec 28;82(5):1486-95. (PMID: 26712544)
Sci Rep. 2016 Sep 27;6:34212. (PMID: 27670643)
Nature. 2015 Mar 12;519(7542):207-10. (PMID: 25762281)
Environ Microbiol. 2017 Aug;19(8):2935-2948. (PMID: 28419666)
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2555-60. (PMID: 15671178)
J Microbiol. 2019 Dec;57(12):1095-1104. (PMID: 31758395)
Int J Syst Evol Microbiol. 2016 Feb;66(2):744-748. (PMID: 26597157)
فهرسة مساهمة: Keywords: basalt; carbonate; chemoautotrophy; hydrogen; iron reduction
المشرفين على المادة: 142M471B3J (Carbon Dioxide)
7YNJ3PO35Z (Hydrogen)
تواريخ الأحداث: Date Created: 20210109 Date Completed: 20210507 Latest Revision: 20210507
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7812807
DOI: 10.1073/pnas.2007051117
PMID: 33419920
قاعدة البيانات: MEDLINE
الوصف
تدمد:1091-6490
DOI:10.1073/pnas.2007051117