دورية أكاديمية

Skin Equivalent Models: Protocols for In Vitro Reconstruction for Dermal Toxicity Evaluation.

التفاصيل البيبلوغرافية
العنوان: Skin Equivalent Models: Protocols for In Vitro Reconstruction for Dermal Toxicity Evaluation.
المؤلفون: do Nascimento Pedrosa T; Skin Biology and Melanoma Laboratory, School of Pharmaceutical Sciences, University of São Paulo, Butantã, SP, Brazil., Catarino CM; Skin Biology and Melanoma Laboratory, School of Pharmaceutical Sciences, University of São Paulo, Butantã, SP, Brazil., Pennacchi PC; Skin Biology and Melanoma Laboratory, School of Pharmaceutical Sciences, University of São Paulo, Butantã, SP, Brazil., de Moraes Barros SB; Skin Biology and Melanoma Laboratory, School of Pharmaceutical Sciences, University of São Paulo, Butantã, SP, Brazil., Maria-Engler SS; Skin Biology and Melanoma Laboratory, School of Pharmaceutical Sciences, University of São Paulo, Butantã, SP, Brazil. silvya@usp.br.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2021; Vol. 2240, pp. 31-41.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Epidermis/*drug effects , Primary Cell Culture/*methods , Skin Irritancy Tests/*methods, Cells, Cultured ; Humans
مستخلص: This chapter presents the protocols for developing of skin equivalents (SE) and reconstructed human epidermis (RHE) models for dermal toxicity evaluation as an alternative method to animal use in research. It provides a detailed protocol for the in vitro reconstruction of human skin from primary keratinocytes, melanocytes, and fibroblasts obtained from foreskin biopsies, including the procedures for reconstruction of a stratified epidermis on a polyester membrane. SE and RHE developed through these methods have been proven suitable not only for dermal toxicity studies, but also for investigating of pathological conditions in the skin, such as diabetes and invasion of melanoma.
References: Worth A, Barroso J, Bremer S et al (2014) Alternative methods for regulatory toxicology—a state-of-the-art review. JRC Sci Policy Rep 26797. https://doi.org/10.2788/11111.
Mathur AK, Khanna SK (2002) Dermal toxicity due to industrial chemicals. Skin Pharmacol Physiol 15:147–153. https://doi.org/10.1159/000063543. (PMID: 10.1159/000063543)
Welss T, Basketter DA, Schröder KR (2004) In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol Vitr 18:231–243. https://doi.org/10.1016/j.tiv.2003.09.009. (PMID: 10.1016/j.tiv.2003.09.009)
Muhammad F, Riviere JE (2007) Dermal toxicity. Vet. Toxicol:263–276.
Park Y-H, Kim JN, Jeong SH et al (2010) Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 267:178–181. https://doi.org/10.1016/j.tox.2009.10.011. (PMID: 10.1016/j.tox.2009.10.01119850098)
Roguet R, Cohen C, Leclaire J et al (2000) Use of a standardized reconstructed epidermis kit to assess in vitro the tolerance and the efficacy of cosmetics. Int J Cosmet Sci 22:409–419. (PMID: 10.1111/j.1468-2494.2000.00016.x)
Abd E, Yousef SA, Pastore MN et al (2016) Skin models for the testing of transdermal drugs. Clin Pharmacol 8:163–176. https://doi.org/10.2147/CPAA.S64788. (PMID: 10.2147/CPAA.S64788277998315076797)
Kim K, Park H, Lim K-M (2015) Phototoxicity: its mechanism and animal alternative test methods. Toxicol Res 31:97–104. https://doi.org/10.5487/TR.2015.31.2.097. (PMID: 10.5487/TR.2015.31.2.097261913784505355)
Netzlaff F, Lehr C-M, Wertz PW, Schaefer UF (2005) The human epidermis models EpiSkin®, SkinEthic® and EpiDerm®: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 60:167–178. https://doi.org/10.1016/j.ejpb.2005.03.004. (PMID: 10.1016/j.ejpb.2005.03.00415913972)
Ho J, Heisler E, Weimans S et al Phototoxicity in vitro: Investigation of photoreactions in the skin using the reconstructed epidermis. Epidermal Skin Test 1000 1000:1000.
Wills JW, Hondow N, Thomas AD et al (2016) Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Part Fibre Toxicol 13:50. https://doi.org/10.1186/s12989-016-0161-5. (PMID: 10.1186/s12989-016-0161-5276133755016964)
do Nascimento Pedrosa T, Catarino CM, Pennacchi PC et al (2017) A new reconstructed human epidermis for in vitro skin irritation testing. Toxicol In Vitro 42:31–37. https://doi.org/10.1016/j.tiv.2017.03.010. (PMID: 10.1016/j.tiv.2017.03.010)
Brohem CA, da Silva Cardeal LB, Tiago M et al (2011) Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res 24:35–50. https://doi.org/10.1111/j.1755-148X.2010.00786.x. (PMID: 10.1111/j.1755-148X.2010.00786.x21029393)
De Vuyst E, Charlier C, Giltaire S et al (2014) Reconstruction of normal and pathological human epidermis on polycarbonate filter. Methods Mol Biol 1195:191–201. https://doi.org/10.1007/7651_2013_40. (PMID: 10.1007/7651_2013_4024155233)
Poumay Y, Dupont F, Marcoux S et al (2004) A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch Dermatol Res 296:203–211. https://doi.org/10.1007/s00403-004-0507-y. (PMID: 10.1007/s00403-004-0507-y15349789)
Groeber F, Schober L, Schmid FF et al (2016) Catch-up validation study of an in vitro skin irritation test method based on an open source reconstructed epidermis (phase II). Toxicol Vitr 36:254–261. https://doi.org/10.1016/j.tiv.2016.07.008. (PMID: 10.1016/j.tiv.2016.07.008)
De Wever B, Goldberg A, Eskes C et al (2015) “Open source”–based engineered human tissue models: a new gold standard for nonanimal testing through openness, transparency, and collaboration, promoted by the ALEXANDRA Association. Appl Vitr Toxicol 1:5–9. https://doi.org/10.1089/aivt.2014.0011. (PMID: 10.1089/aivt.2014.0011)
Pennacchi PC, de Almeida MES, Gomes OLA et al (2015) Glycated reconstructed human skin as a platform to study the pathogenesis of skin aging. Tissue Eng Part A 21:2417–2425. https://doi.org/10.1089/ten.tea.2015.0009. (PMID: 10.1089/ten.tea.2015.000926132636)
Brohem CA, Massaro RR, Tiago M et al (2012) Proteasome inhibition and ROS generation by 4-nerolidylcatechol induces melanoma cell death. Pigment Cell Melanoma Res 25:354–369. https://doi.org/10.1111/j.1755-148X.2012.00992.x. (PMID: 10.1111/j.1755-148X.2012.00992.x22372875)
Faiao-Flores F, Alves-Fernandes DK, Pennacchi PC et al (2016) Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene 36(13):1849–1861. https://doi.org/10.1038/onc.2016.348. (PMID: 10.1038/onc.2016.348277487625378933)
da Silva Cardeal LB, Brohem CA, Correa TCS et al (2006) Higher expression and activity of metalloproteinases in human cervical carcinoma cell lines is associated with HPV presence. Biochem Cell Biol 84:713–719. https://doi.org/10.1139/o06-084. (PMID: 10.1139/o06-08417167534)
فهرسة مساهمة: Keywords: Human primary cells; Primary culture; Reconstructed human epidermis (RHE); Skin equivalent (SE)
تواريخ الأحداث: Date Created: 20210110 Date Completed: 20210326 Latest Revision: 20210326
رمز التحديث: 20240628
DOI: 10.1007/978-1-0716-1091-6_3
PMID: 33423224
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-1091-6_3