دورية أكاديمية

Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of GmGRAS37 in Drought and Salt Tolerance.

التفاصيل البيبلوغرافية
العنوان: Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of GmGRAS37 in Drought and Salt Tolerance.
المؤلفون: Wang TT; College of Agriculture, Yangtze University, Jingzhou, China.; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China.; Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China.; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China., Yu TF; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China., Fu JD; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China., Su HG; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China., Chen J; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China., Zhou YB; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China., Chen M; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China., Guo J; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China., Ma YZ; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China., Wei WL; College of Agriculture, Yangtze University, Jingzhou, China.; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China.; Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China., Xu ZS; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China.
المصدر: Frontiers in plant science [Front Plant Sci] 2020 Dec 23; Vol. 11, pp. 604690. Date of Electronic Publication: 2020 Dec 23 (Print Publication: 2020).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101568200 Publication Model: eCollection Cited Medium: Print ISSN: 1664-462X (Print) Linking ISSN: 1664462X NLM ISO Abbreviation: Front Plant Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation, 2010-
مستخلص: GRAS genes, which form a plant-specific transcription factor family, play an important role in plant growth and development and stress responses. However, the functions of GRAS genes in soybean ( Glycine max ) remain largely unknown. Here, 117 GRAS genes distributed on 20 chromosomes were identified in the soybean genome and were classified into 11 subfamilies. Of the soybean GRAS genes, 80.34% did not have intron insertions, and 54 pairs of genes accounted for 88.52% of duplication events (61 pairs). RNA-seq analysis demonstrated that most GmGRASs were expressed in 14 different soybean tissues examined and responded to multiple abiotic stresses. Results from quantitative real-time PCR analysis of six selected GmGRASs suggested that GmGRAS37 was significantly upregulated under drought and salt stress conditions and abscisic acid and brassinosteroid treatment; therefore, this gene was selected for further study. Subcellular localization analysis revealed that the GmGRAS37 protein was located in the plasma membrane, nucleus, and cytosol. Soybean hairy roots overexpressing GmGRAS37 had improved resistance to drought and salt stresses. In addition, these roots showed increased transcript levels of several drought- and salt-related genes. The results of this study provide the basis for comprehensive analysis of GRAS genes and insight into the abiotic stress response mechanism in soybean.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2020 Wang, Yu, Fu, Su, Chen, Zhou, Chen, Guo, Ma, Wei and Xu.)
References: Cell. 1996 Aug 9;86(3):423-33. (PMID: 8756724)
Mol Biol Evol. 2007 Jan;24(1):171-81. (PMID: 17065597)
Mol Plant Pathol. 2006 Nov;7(6):593-604. (PMID: 20507472)
Plant Cell Rep. 2016 Mar;35(3):655-66. (PMID: 26687967)
Bioinformatics. 2012 Oct 1;28(19):2407-11. (PMID: 22829623)
BMC Plant Biol. 2015 Aug 25;15:209. (PMID: 26302743)
Plant Cell. 2008 Nov;20(11):3122-35. (PMID: 18984675)
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8. (PMID: 19458158)
Plant Physiol. 1990 Aug;93(4):1337-46. (PMID: 16667622)
Front Plant Sci. 2019 Nov 18;10:1453. (PMID: 31803204)
Genes Dev. 1997 Dec 1;11(23):3194-205. (PMID: 9389651)
Genes Dev. 2002 Sep 1;16(17):2213-8. (PMID: 12208843)
Planta. 2004 Mar;218(5):683-92. (PMID: 14760535)
J Exp Bot. 2013 Jul;64(10):2915-27. (PMID: 23682116)
Front Plant Sci. 2017 Sep 26;8:1659. (PMID: 29018467)
BMC Bioinformatics. 2007 Feb 07;8:42. (PMID: 17286856)
Nature. 2003 Apr 10;422(6932):618-21. (PMID: 12687001)
Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):290-5. (PMID: 9874811)
Biol Direct. 2012 Apr 16;7:11. (PMID: 22507701)
Int J Mol Sci. 2019 Jun 19;20(12):. (PMID: 31248195)
BMC Plant Biol. 2019 Aug 6;19(1):342. (PMID: 31387526)
Genes Dev. 2003 May 1;17(9):1175-87. (PMID: 12730136)
Plant Biotechnol J. 2019 Jan;17(1):164-177. (PMID: 29797449)
DNA Res. 2011 Feb;18(1):17-29. (PMID: 21208938)
Plant Mol Biol. 2008 Aug;67(6):659-70. (PMID: 18500650)
Nat Protoc. 2007;2(7):1565-72. (PMID: 17585298)
Yi Chuan. 2007 Aug;29(8):1023-6. (PMID: 17681935)
J Exp Bot. 2020 Mar 25;71(6):1842-1857. (PMID: 31875914)
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2166-71. (PMID: 21245304)
BMC Plant Biol. 2018 Dec 3;18(1):320. (PMID: 30509166)
Int J Mol Sci. 2018 Dec 17;19(12):. (PMID: 30562982)
Plant Cell. 1998 Feb;10(2):155-69. (PMID: 9490740)
Plant J. 2015 Feb;81(3):505-18. (PMID: 25495120)
BMC Plant Biol. 2020 Sep 5;20(1):415. (PMID: 32891114)
BMC Genomics. 2018 May 9;19(1):348. (PMID: 29743013)
PLoS One. 2017 Sep 28;12(9):e0185418. (PMID: 28957440)
Planta. 2019 Nov;250(5):1521-1538. (PMID: 31346803)
J Plant Physiol. 2007 Sep;164(9):1220-30. (PMID: 17007961)
Nat Rev Genet. 2002 Nov;3(11):827-37. (PMID: 12415313)
Plant J. 2009 Jun;58(5):803-16. (PMID: 19220793)
BMC Plant Biol. 2015 Jun 13;15:141. (PMID: 26067440)
Front Plant Sci. 2016 Jul 25;7:1082. (PMID: 27504114)
Cell. 2000 May 26;101(5):555-67. (PMID: 10850497)
Plant Cell. 2019 Sep;31(9):2107-2130. (PMID: 31227558)
Nat Rev Genet. 2001 Jul;2(7):516-27. (PMID: 11433358)
Genes Dev. 2000 May 15;14(10):1269-78. (PMID: 10817761)
Plant Mol Biol. 2004 Mar;54(4):519-32. (PMID: 15316287)
Genomics. 2014 Jan;103(1):135-46. (PMID: 24365788)
Nucleic Acids Res. 2002 Jan 1;30(1):325-7. (PMID: 11752327)
Mol Biol Evol. 2016 Jul;33(7):1870-4. (PMID: 27004904)
Front Plant Sci. 2018 Dec 06;9:1792. (PMID: 30574156)
J Biol Chem. 2003 Jun 6;278(23):20865-73. (PMID: 12657631)
Nat Protoc. 2007;2(4):948-52. (PMID: 17446894)
Plant J. 1999 Apr;18(1):111-9. (PMID: 10341448)
PeerJ. 2018 May 29;6:e4796. (PMID: 29868257)
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14162-7. (PMID: 11717468)
Mol Genet Genomics. 2015 Feb;290(1):303-17. (PMID: 25245166)
فهرسة مساهمة: Keywords: GRAS protein; abiotic stress; genome-wide analysis; hairy root assay; soybean
تواريخ الأحداث: Date Created: 20210111 Latest Revision: 20210112
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7793673
DOI: 10.3389/fpls.2020.604690
PMID: 33424904
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-462X
DOI:10.3389/fpls.2020.604690