دورية أكاديمية

Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice.

التفاصيل البيبلوغرافية
العنوان: Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice.
المؤلفون: Dufies O; Université Côte d'Azur, Inserm, C3M, Nice, France., Doye A; Université Côte d'Azur, Inserm, C3M, Nice, France., Courjon J; Université Côte d'Azur, Inserm, C3M, Nice, France.; Université Côte d'Azur, CHU Nice, Nice, France., Torre C; Université Côte d'Azur, Inserm, C3M, Nice, France., Michel G; Université Côte d'Azur, Inserm, C3M, Nice, France., Loubatier C; Université Côte d'Azur, Inserm, C3M, Nice, France., Jacquel A; Université Côte d'Azur, Inserm, C3M, Nice, France., Chaintreuil P; Université Côte d'Azur, Inserm, C3M, Nice, France., Majoor A; Université Côte d'Azur, Inserm, C3M, Nice, France., Guinamard RR; Université Côte d'Azur, Inserm, C3M, Nice, France., Gallerand A; Université Côte d'Azur, Inserm, C3M, Nice, France., Saavedra PHV; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium., Verhoeyen E; Université Côte d'Azur, Inserm, C3M, Nice, France.; CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France., Rey A; CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France., Marchetti S; Université Côte d'Azur, Inserm, C3M, Nice, France., Ruimy R; Université Côte d'Azur, Inserm, C3M, Nice, France.; Université Côte d'Azur, CHU Nice, Nice, France., Czerucka D; Centre Scientifique de Monaco, Monaco, Monaco.; LIA ROPSE, Laboratoire International Associé Université Côte d'Azur, Centre Scientifique de Monaco, Nice, France., Lamkanfi M; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium., Py BF; CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France., Munro P; Université Côte d'Azur, Inserm, C3M, Nice, France., Visvikis O; Université Côte d'Azur, Inserm, C3M, Nice, France., Boyer L; Université Côte d'Azur, Inserm, C3M, Nice, France. laurent.boyer@univ-cotedazur.fr.; LIA ROPSE, Laboratoire International Associé Université Côte d'Azur, Centre Scientifique de Monaco, Nice, France. laurent.boyer@univ-cotedazur.fr.
المصدر: Nature microbiology [Nat Microbiol] 2021 Mar; Vol. 6 (3), pp. 401-412. Date of Electronic Publication: 2021 Jan 11.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2016]-
مواضيع طبية MeSH: Bacteremia/*metabolism , Bacterial Toxins/*metabolism , Escherichia coli/*metabolism , Escherichia coli Infections/*metabolism , Escherichia coli Proteins/*metabolism , Inflammasomes/*metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/*metabolism , rac GTP-Binding Proteins/*metabolism, Animals ; Bacteremia/immunology ; Bacteremia/microbiology ; Bacterial Load ; Bacterial Toxins/genetics ; Escherichia coli/genetics ; Escherichia coli Infections/immunology ; Escherichia coli Infections/microbiology ; Escherichia coli Proteins/genetics ; Immunity, Innate ; Mice ; Phosphorylation ; Signal Transduction ; p21-Activated Kinases/metabolism ; rac GTP-Binding Proteins/genetics ; RAC2 GTP-Binding Protein
مستخلص: Inflammasomes are signalling platforms that are assembled in response to infection or sterile inflammation by cytosolic pattern recognition receptors. The consequent inflammasome-triggered caspase-1 activation is critical for the host defence against pathogens. During infection, NLRP3, which is a pattern recognition receptor that is also known as cryopyrin, triggers the assembly of the inflammasome-activating caspase-1 through the recruitment of ASC and Nek7. The activation of the NLRP3 inflammasome is tightly controlled both transcriptionally and post-translationally. Despite the importance of the NLRP3 inflammasome regulation in autoinflammatory and infectious diseases, little is known about the mechanism controlling the activation of NLRP3 and the upstream signalling that regulates the NLRP3 inflammasome assembly. We have previously shown that the Rho-GTPase-activating toxin from Escherichia coli cytotoxic necrotizing factor-1 (CNF1) activates caspase-1, but the upstream mechanism is unclear. Here, we provide evidence of the role of the NLRP3 inflammasome in sensing the activity of bacterial toxins and virulence factors that activate host Rho GTPases. We demonstrate that this activation relies on the monitoring of the toxin's activity on the Rho GTPase Rac2. We also show that the NLRP3 inflammasome is activated by a signalling cascade that involves the p21-activated kinases 1 and 2 (Pak1/2) and the Pak1-mediated phosphorylation of Thr 659 of NLRP3, which is necessary for the NLRP3-Nek7 interaction, inflammasome activation and IL-1β cytokine maturation. Furthermore, inhibition of the Pak-NLRP3 axis decreases the bacterial clearance of CNF1-expressing UTI89 E. coli during bacteraemia in mice. Taken together, our results establish that Pak1 and Pak2 are critical regulators of the NLRP3 inflammasome and reveal the role of the Pak-NLRP3 signalling axis in vivo during bacteraemia in mice.
References: Martin, G. S., Mannino, D. M., Eaton, S. & Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003). (PMID: 1270037410.1056/NEJMoa022139)
Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009). (PMID: 19616762277772710.1016/j.chom.2009.06.007)
Stuart, L. M., Paquette, N. & Boyer, L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 13, 199–206 (2013). (PMID: 23411798412146810.1038/nri3398)
Flatau, G. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387, 729–733 (1997). (PMID: 919290110.1038/42743)
Schmidt, G. et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387, 725–729 (1997). (PMID: 919290010.1038/42735)
Aktories, K. & Barbieri, J. Bacterial cytotoxins: targeting eukaryotic switches. Nat. Rev. Microbiol. 3, 397–410 (2005). (PMID: 1582172610.1038/nrmicro1150)
Galán, J. E. Common themes in the design and function of bacterial effectors. Cell Host Microbe 5, 571–579 (2009). (PMID: 19527884272965310.1016/j.chom.2009.04.008)
Bruno, V. M. et al. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog. 5, e1000538 (2009). (PMID: 19662166271497510.1371/journal.ppat.1000538)
Munro, P. et al. Activation and proteasomal degradation of Rho GTPases by cytotoxic necrotizing factor-1 elicit a controlled inflammatory response. J. Biol. Chem. 279, 35849–35857 (2004). (PMID: 1515200210.1074/jbc.M401580200)
Boquet, P. & Lemichez, E. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol. 13, 238–246 (2003). (PMID: 1274216710.1016/S0962-8924(03)00037-0)
Diabate, M. et al. Escherichia coli α-hemolysin counteracts the anti-virulence innate immune response triggered by the Rho GTPase activating toxin CNF1 during bacteremia. PLoS Pathog. 11, e1004732 (2015). (PMID: 25781937436352910.1371/journal.ppat.1004732)
Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513, 237–241 (2014). (PMID: 2491914910.1038/nature13449)
Groslambert, M. & Py, B. F. Spotlight on the NLRP3 inflammasome pathway. J. Inflamm. Res. 11, 359–374 (2018). (PMID: 30288079616173910.2147/JIR.S141220)
Yang, Y., Wang, H., Kouadir, M., Song, H. & Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 10, 128 (2019). (PMID: 30755589637266410.1038/s41419-019-1413-8)
Gao, W., Yang, J., Liu, W., Wang, Y. & Shao, F. Site-specific phosphorylation and microtubule dynamics control pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, E4857–E4866 (2016). (PMID: 2748210910.1073/pnas.1601700113)
Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016). (PMID: 27270401495568410.1038/ni.3457)
Tzeng, T. C. et al. A fluorescent reporter mouse for inflammasome assembly demonstrates an important role for cell-bound and free ASC specks during in vivo Infection. Cell Rep. 16, 571–582 (2016). (PMID: 27346360538457410.1016/j.celrep.2016.06.011)
Sester, D. P. et al. Assessment of inflammasome formation by flow cytometry. Curr. Protoc. Immunol. 114, 14.40.1–14.40.29 (2016). (PMID: 10.1002/cpim.13)
Lamkanfi, M. & Dixit, V. M. In retrospect: the inflammasome turns 15. Nature 548, 534–535 (2017). (PMID: 2885831410.1038/548534a)
He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016). (PMID: 27669650512393910.1016/j.tibs.2016.09.002)
Shi, H., Murray, A. & Beutler, B. Reconstruction of the mouse inflammasome system in HEK293T cells. Bio. Protoc. 6, e1986 (2016). (PMID: 28516117543158310.21769/BioProtoc.1986)
Keestra, A. M. et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496, 233–237 (2013). (PMID: 23542589362547910.1038/nature12025)
Doye, A. et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111, 553–564 (2002). (PMID: 1243792810.1016/S0092-8674(02)01132-7)
Boyer, L. et al. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 35, 536–549 (2011). (PMID: 22018470325850310.1016/j.immuni.2011.08.015)
Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994). (PMID: 810777410.1038/367040a0)
Wells, C. M. & Jones, G. E. The emerging importance of group II PAKs. Biochem. J. 425, 465–473 (2010). (PMID: 2007025610.1042/BJ20091173)
Semenova, G. & Chernoff, J. Targeting PAK1. Biochem. Soc. Trans. 45, 79–88 (2017). (PMID: 28202661597381710.1042/BST20160134)
Song, N. et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell 68, 185–197 (2017). (PMID: 2894331510.1016/j.molcel.2017.08.017)
Sharif, H. et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570, 338–343 (2019). (PMID: 31189953677435110.1038/s41586-019-1295-z)
Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015). (PMID: 25686105439217910.1038/nm.3806)
Kelly, M. L. & Chernoff, J. Mouse models of PAK function. Cell Logist. 2, 84–88 (2012). (PMID: 23162740349096610.4161/cl.21381)
Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015). (PMID: 2637500310.1038/nature15514)
He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015). (PMID: 26611636467099510.1038/cr.2015.139)
Broz, P., Pelegrín, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020). (PMID: 3169084010.1038/s41577-019-0228-2)
Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018). (PMID: 3046717110.1126/science.aar7607)
Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2018). (PMID: 2919581110.1016/j.immuni.2017.11.013)
Monteleone, M. et al. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018). (PMID: 3008925410.1016/j.celrep.2018.07.027)
Pandori, W. J. et al. Toxoplasma gondii activates a Syk-CARD9-NF-κB signaling axis and gasdermin D-independent release of IL-1β during infection of primary human monocytes. PLoS Pathog. 15, e1007923 (2019). (PMID: 31449558673095510.1371/journal.ppat.1007923)
Muessel, M. J., Harry, G. J., Armstrong, D. L. & Storey, N. M. SDF-1α and LPA modulate microglia potassium channels through rho GTPases to regulate cell morphology. Glia 61, 1620–1628 (2013). (PMID: 23893870478376210.1002/glia.22543)
Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006). (PMID: 1710895710.1038/nature05286)
Lopes Fischer, N., Naseer, N., Shin, S. & Brodsky, I. E. Effector-triggered immunity and pathogen sensing in metazoans. Nat. Microbiol. 5, 14–26 (2020). (PMID: 3185773310.1038/s41564-019-0623-2)
Aubert, D. F. et al. A Burkholderia type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation. Cell Host Microbe 19, 664–674 (2016). (PMID: 2713344910.1016/j.chom.2016.04.004)
Medici, N. P., Rashid, M. & Bliska, J. B. Characterization of pyrin dephosphorylation and inflammasome activation in macrophages as triggered by the yersinia effectors YopE and YopT. Infect. Immun. 87, e00822-18 (2019).
Cabral, V. P., Andrade, C. A., Passos, S. R., Martins, M. F. & Hökerberg, Y. H. Severe infection in patients with rheumatoid arthritis taking anakinra, rituximab, or abatacept: a systematic review of observational studies. Rev. Bras. Reumatol. Engl. Ed. 56, 543–550 (2016). (PMID: 2791460210.1016/j.rbr.2016.07.008)
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). (PMID: 2884575110.1056/NEJMoa1707914)
Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69, 4572–4579 (2001). (PMID: 114020019853410.1128/IAI.69.7.4572-4579.2001)
Buetow, L., Flatau, G., Chiu, K., Boquet, P. & Ghosh, P. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nat. Struct. Biol. 8, 584–588 (2001). (PMID: 1142788610.1038/89610)
Doye, A., Boyer, L., Mettouchi, A. & Lemichez, E. Ubiquitin-mediated proteasomal degradation of Rho proteins by the CNF1 toxin. Methods Enzymol. 406, 447–456 (2006). (PMID: 1647267710.1016/S0076-6879(06)06033-2)
Matsuzawa, T., Kashimoto, T., Katahira, J. & Horiguchi, Y. Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect. Immun. 70, 3427–3432 (2002). (PMID: 1206548212805610.1128/IAI.70.7.3427-3432.2002)
Kubori, T. & Galán, J. E. Temporal regulation of salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003). (PMID: 1463656010.1016/S0092-8674(03)00849-3)
Lagrange, B. et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat. Commun. 9, 242 (2018). (PMID: 29339744577046510.1038/s41467-017-02682-y)
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006). (PMID: 1640788910.1038/nature04516)
McDaniel, A. S. et al. Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1 +/− mast cells. Blood 112, 4646–4654 (2008). (PMID: 18768391259713110.1182/blood-2008-04-155085)
Stutz, A. et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J. Exp. Med. 214, 1725–1736 (2017). (PMID: 28465465546099610.1084/jem.20160933)
معلومات مُعتمدة: 616986 International ERC_ European Research Council
المشرفين على المادة: 0 (Bacterial Toxins)
0 (Escherichia coli Proteins)
0 (Inflammasomes)
0 (NLR Family, Pyrin Domain-Containing 3 Protein)
0 (Nlrp3 protein, mouse)
106803-33-2 (cytotoxic necrotizing factor type 1)
EC 2.7.11.1 (Pak1 protein, mouse)
EC 2.7.11.1 (Pak2 protein, mouse)
EC 2.7.11.1 (p21-Activated Kinases)
EC 3.6.5.2 (rac GTP-Binding Proteins)
تواريخ الأحداث: Date Created: 20210112 Date Completed: 20210512 Latest Revision: 20231213
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7116836
DOI: 10.1038/s41564-020-00832-5
PMID: 33432150
قاعدة البيانات: MEDLINE
الوصف
تدمد:2058-5276
DOI:10.1038/s41564-020-00832-5