دورية أكاديمية

Statistical learning as a reference point for memory distortions: Swap and shift errors.

التفاصيل البيبلوغرافية
العنوان: Statistical learning as a reference point for memory distortions: Swap and shift errors.
المؤلفون: Scotti PS; Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA. scottibrain@gmail.com., Hong Y; Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA., Golomb JD; Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA., Leber AB; Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA.
المصدر: Attention, perception & psychophysics [Atten Percept Psychophys] 2021 May; Vol. 83 (4), pp. 1652-1672. Date of Electronic Publication: 2021 Jan 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101495384 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1943-393X (Electronic) Linking ISSN: 19433921 NLM ISO Abbreviation: Atten Percept Psychophys Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : New York : Springer
Original Publication: Austin, Tex. : Psychonomic Society
مواضيع طبية MeSH: Mental Recall* , Visual Perception*, Color Perception ; Humans ; Memory, Long-Term ; Memory, Short-Term
مستخلص: Humans use regularities in the environment to facilitate learning, often without awareness or intent. How might such regularities distort long-term memory? Here, participants studied and reported the colors of objects in a long-term memory paradigm, uninformed that certain colors were sampled more frequently overall. When participants misreported an object's color, these errors were often centered around the average studied color (i.e., "Rich" color), demonstrating swap errors in long-term memory due to imposed statistical regularities. We observed such swap errors regardless of memory load, explicit knowledge, or the distance in color space between the correct color of the tested object and the Rich color. An explicit guessing strategy where participants intentionally made swap errors when uncertain could not fully account for our results. We discuss other potential sources of observed swap errors such as false memory and implicit biased guessing. Although less robust than swap errors, evidence was also observed for subtle shift errors towards or away from the Rich color dependent on the color distance between the correct color and the Rich color. Together, these findings of swap and shift errors provide converging evidence for memory distortion mechanisms induced by a reference point, bridging a gap in the literature between how attention to regularities similarly influences visual working memory and visual long-term memory.
References: Aimone, J. B., Deng, W., & Gage, F. H. (2011). Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation. Neuron, 70(4), 589–596. https://doi.org/10.1016/j.neuron.2011.05.010. (PMID: 10.1016/j.neuron.2011.05.010216098183240575)
Allon, A. S., & Luria, R. (2017). Compensation mechanisms that improve distractor filtering are short-lived. Cognition. https://doi.org/10.1016/j.cognition.2017.03.020.
Bae, G.-Y., & Luck, S. J. (2017). Interactions between visual working memory representations. Attention, Perception, & Psychophysics, (August), 2376–2395. https://doi.org/10.3758/s13414-017-1404-8.
Bae, G.-Y., Olkkonen, M., Allred, S. R., & Flombaum, J. I. (2015). Why some colors appear more memorable than others: A model combining categories and particulars in color working memory. Journal of Experimental Psychology: General, 144(4), 744–763. https://doi.org/10.1037/xge0000076. (PMID: 10.1037/xge0000076)
Bartlett, F. C. (1932). Remembering: A Study in Experimental and Social Psychology. Cambridge, Social Psychology. https://doi.org/10.1111/j.2044-8279.1933.tb02913.x.
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7–7. https://doi.org/10.1167/9.10.7. (PMID: 10.1167/9.10.7198107883118422)
Bays, P. M., Wu, E. Y., & Husain, M. (2011). Storage and binding of object features in visual working memory. Neuropsychologia, 49(6), 1622-1631. (PMID: 10.1016/j.neuropsychologia.2010.12.023)
Brady, T., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science. https://doi.org/10.1177/0956797610397956.
Brady, T., Konkle, T., Alvarez, G., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 14325–14329. https://doi.org/10.1073/pnas.0803390105. (PMID: 10.1073/pnas.0803390105)
Brady, T., Konkle, T., Alvarez, G., & Oliva, A. (2013). Real-world objects are not represented as bound units: Independent forgetting of different object details from visual memory. Journal of Experimental Psychology: General, 142(3), 791–808. https://doi.org/10.1037/a0029649. (PMID: 10.1037/a0029649)
Brady, T., Konkle, T., Gill, J., Oliva, A., & Alvarez, G. (2013). Visual Long-Term Memory Has the Same Limit on Fidelity as Visual Working Memory. Psychological Science, 24(6), 981–990. https://doi.org/10.1177/0956797612465439. (PMID: 10.1177/095679761246543923630219)
Brady, T. F., Schacter, D. L., & Alvarez, G. (2018, August 16). The adaptive nature of false memories is revealed by gist-based distortion of true memories. PsyArXiv. https://doi.org/10.31234/osf.io/zeg95.
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision. https://doi.org/10.1163/156856897X00357.
Brainerd, C. J., & Reyna, V. F. (2008). The Science of False Memory. https://doi.org/10.1093/acprof:oso/9780195154054.001.0001.
Brodeur, M. B., Dionne-dostie, E., Montreuil, T., & Lepage, M. (2010). The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research. PLoS ONE, 5(5). https://doi.org/10.1371/journal.pone.0010773.
Carpenter, A. C., & Schacter, D. L. (2017). Flexible retrieval: When true inferences produce false memories. Journal of Experimental Psychology: Learning Memory and Cognition. https://doi.org/10.1037/xlm0000340.
Chen, J., Leber, A. B., & Golomb, J. D. (2019). Attentional capture alters feature perception. Journal of experimental psychology. Human perception and performance.
Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate free recall. Journal of Experimental Psychology, 58, 17–22. https://doi.org/10.1037/h0046671. (PMID: 10.1037/h004667113664879)
Dowd, E. W., & Golomb, J. D. (2019). Object-feature binding survives dynamic shifts of spatial attention. Psychological Science, 30(3), 343-361. (PMID: 10.1177/0956797618818481)
Duncan, K., Sadanand, A., & Davachi, L. (2012). Memory’s Penumbra: Episodic Memory Decisions Induce Lingering Mnemonic Biases. Science, 337(6093), 485–487. https://doi.org/10.1126/science.1221936. (PMID: 10.1126/science.1221936228375283527841)
Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological bulletin, 53(2), 134. (PMID: 10.1037/h0045156)
Fan, J. E., Hutchinson, J. B., & Turk-Browne, N. B. (2016). When past is present: Substitutions of long-term memory for sensory evidence in perceptual judgments. Journal of Vision, 16(8), 1. https://doi.org/10.1167/16.8.1. (PMID: 10.1167/16.8.1272485654898202)
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(175). https://doi.org/10.3758/BF03193146. (PMID: 10.3758/BF031931461769534317695343)
Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature neuroscience, 17(5), 738-743. (PMID: 10.1038/nn.3689)
Fougnie, D., Suchow, J., & Alvarez, G. (2012). Variability in the quality of visual working memory. Nature Communications, 3, 1228–1229. https://doi.org/10.1038/ncomms2237. (PMID: 10.1038/ncomms2237)
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472. doi: https://doi.org/10.1214/ss/1177011136. (PMID: 10.1214/ss/1177011136)
Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520-525. (PMID: 10.1111/1467-9280.00491)
Gibson, J. J. (1937). Adaptation, after-effect, and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the after-effect. Journal of Experimental Psychology, 20(6), 553-569. (PMID: 10.1037/h0057585)
Gibson, J. J., & Radner, M. (1937). Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. Journal of Experimental Psychology, 20(5), 453-467. (PMID: 10.1037/h0059826)
Golomb, J. D. (2015). Divided spatial attention and feature-mixing errors. Attention, Perception, and Psychophysics, 77(8), 2562–2569. https://doi.org/10.3758/s13414-015-0951-0. (PMID: 10.3758/s13414-015-0951-0)
Golomb, J. D., L’Heureux, Z. E., & Kanwisher, N. (2014). Feature-Binding Errors After Eye Movements and Shifts of Attention. Psychological Science, 25(5), 1067–1078. https://doi.org/10.1177/0956797614522068. (PMID: 10.1177/0956797614522068246476724031196)
Guerin, S. A., Robbins, C. A., Gilmore, A. W., & Schacter, D. L. (2012). Retrieval failure contributes to gist-based false recognition. Journal of Memory and Language. https://doi.org/10.1016/j.jml.2011.07.002.
Hardman, K. O., Vergauwe, E., & Ricker, T. J. (2017). Categorical working memory representations are used in delayed estimation of continuous colors. Journal of Experimental Psychology: Human Perception and Performance, 43(1), 30. https://doi.org/10.1037/xhp0000290. (PMID: 10.1037/xhp000029027797548)
Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic bulletin & review, 7(2), 185-207. (PMID: 10.3758/BF03212979)
Hemmer, P., & Steyvers, M. (2009). Integrating episodic memories and prior knowledge at multiple levels of abstraction. Psychonomic Bulletin and Review, 16(1), 80–87. https://doi.org/10.3758/PBR.16.1.80. (PMID: 10.3758/PBR.16.1.8019145014)
Hiris, E., & Blake, R. (1996). Direction repulsion in motion transparency. Visual Neuroscience, 13(1), 187-197. (PMID: 10.1017/S0952523800007227)
Honig, M., Ma, W. J., & Fougnie, D. (2018). Humans incorporate trial-to-trial working memory uncertainty into rewarded decisions. bioRxiv, 1–20. https://doi.org/10.1101/306225.
Huang, J., & Sekuler, R. (2010). Distortions in recall from visual memory: Two classes of attractors at work. Journal of Vision, 10(2), 1–27. https://doi.org/10.1167/10.2.24. (PMID: 10.1167/10.2.2420465333)
Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do categories affect stimulus judgment? Journal of Experimental Psychology: General, 129(2), 220. (PMID: 10.1037/0096-3445.129.2.220)
Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 87. (PMID: 22428675)
Kiyonaga, A., Scimeca, J. M., Bliss, D. P., & Whitney, D. (2017). Serial dependence across perception, attention, and memory. Trends in Cognitive Sciences, 21(7), 493-497. (PMID: 10.1016/j.tics.2017.04.011)
Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science. https://doi.org/10.1177/1745691611406925.
Leutgeb, S., & Leutgeb, J. K. (2007). Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learning & Memory, 14(11), 745-757. https://doi.org/10.1101/lm.703907. (PMID: 10.1101/lm.703907)
Lew, T. F., Pashler, H. E., & Vul, E. (2016). Fragile associations coexist with robust memories for precise details in long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(3), 379. (PMID: 26371498)
Loftus, E. (2003). Our changeable memories: Legal and practical implications. Nature Reviews Neuroscience, 4(3), 231–234. https://doi.org/10.1038/nrn1054. (PMID: 10.1038/nrn105412612635)
Loftus, E., & Hoffman, H. (1989). Misinformation and Memory: The Creation of New Memories. Journal of Experimental Psychology: General. https://doi.org/10.1037/0096-3445.118.1.100.
Loftus, E., Miller, D., & Burns, H. (1978). Semantic integration of verbal information into a visual memory. Journal of Experimental Psychology. Human Learning and Memory. https://doi.org/10.1037/0278-7393.4.1.19.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281. https://doi.org/10.1038/36846. (PMID: 10.1038/368469384378)
Newman, E. J., & Lindsay, D. S. (2009). False memories: What the hell are they for? Applied Cognitive Psychology. https://doi.org/10.1002/acp.1613.
O’Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus. https://doi.org/10.1002/hipo.450040605.
Ohio Supercomputer Center. (1987). Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. http://osc.edu/ark:/19495/f5s1ph73 .
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238. https://doi.org/10.1016/j.tics.2006.03.006. (PMID: 10.1016/j.tics.2006.03.00616616590)
Pratte, M. S. (2018). Swap errors in spatial working memory are guesses. Psychonomic Bulletin and Review, 1-9. https://doi.org/10.3758/s13423-018-1524-8.
Rademaker, R. L., Tredway, C. H., & Tong, F. (2012). Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. Journal of Vision, 12(13), 21–21. https://doi.org/10.1167/12.13.21. (PMID: 10.1167/12.13.21232621534504333)
Roediger, H. L., & McDermott, K. B. (1995). Creating False Memories: Remembering Words Not Presented in Lists. Journal of Experimental Psychology: Learning, Memory, and Cognition. https://doi.org/10.1037/0278-7393.21.4.803.
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-months-old infants. Science, 274(5294), 1926–1928. https://doi.org/10.1126/science.274.5294.1926. (PMID: 10.1126/science.274.5294.19268943209)
Schacter, D. L., Guerin, S. A., & St. Jacques, P. L. (2011). Memory distortion: An adaptive perspective. Trends in Cognitive Sciences, 15(10), 467-474. https://doi.org/10.1016/j.tics.2011.08.004. (PMID: 10.1016/j.tics.2011.08.004219082313183109)
Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2018). Psychophysical scaling reveals a unified theory of visual memory strength. bioRxiv, 325472. https://doi.org/10.1101/325472.
Scotti, P. S., Hong, Y., Leber, A. B., & Golomb, J. (2020, May 9). Active, not passive, visual working memory maintenance produces repulsion. PsyArXiv. https://doi.org/10.31234/osf.io/md5h4.
Suchow, J., Fougnie, D., Brady, T., & Alvarez, G. (2014). Terms of the debate on the format and structure of visual memory. Attention, Perception, and Psychophysics. https://doi.org/10.3758/s13414-014-0690-7.
Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of Vision, 13, 9-9. https://doi.org/10.1167/13.10.9. (PMID: 10.1167/13.10.9239627344521709)
Treisman, A. (1988). Features and Objects: The Fourteenth Bartlett Memorial Lecture. The Quarterly Journal of Experimental Psychology Section A. https://doi.org/10.1080/02724988843000104.
Treisman, A. (1998). Feature-binding, attention and object perception. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0284.
Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology. https://doi.org/10.1016/0010-0285(80)90005-5.
Utochkin, I. S., & Brady, T. F. (2019). Independent storage of different features of real-world objects in long-term memory. Journal of Experimental Psychology: General, 149(3), 530-549. https://doi.org/10.1037/xge0000664. (PMID: 10.1037/xge0000664)
van Kesteren, M. T., Brown, T. I., & Wagner, A. D. (2016). Interactions between Memory and New Learning: Insights from fMRI Multivoxel Pattern Analysis. Frontiers in Systems Neuroscience, 10(May), 1–5. https://doi.org/10.3389/fnsys.2016.00046. (PMID: 10.3389/fnsys.2016.00046)
Wenderoth, P., & Johnstone, S. (1988). The different mechanisms of the direct and indirect tilt illusions. Vision Research, 28(2), 301-312. (PMID: 10.1016/0042-6989(88)90158-7)
Wenderoth, P., & Wiese, M. (2008). Retinotopic encoding of the direction aftereffect. Vision Research, 48(19), 1949-1954. (PMID: 10.1016/j.visres.2008.06.013)
Wiese, M., & Wenderoth, P. (2007). The different mechanisms of the motion direction illusion and aftereffect. Vision Research, 47(14), 1963-1967. (PMID: 10.1016/j.visres.2007.04.010)
Wixted, J. T., Mickes, L., & Fisher, R. P. (2018). Rethinking the Reliability of Eyewitness Memory. Perspectives on Psychological Science, 13(3), 324–335. https://doi.org/10.1177/1745691617734878. (PMID: 10.1177/174569161773487829716454)
Yassa, M. A., & Stark, C. E. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515–525. https://doi.org/10.1016/j.tins.2011.06.006. (PMID: 10.1016/j.tins.2011.06.006217880863183227)
Yoo, A. H., Klyszejko, Z., Curtis, C. E., & Ma, W. J. (2018). Strategic allocation of working memory resource. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-34282-1. (PMID: 10.1038/s41598-018-34282-1)
Zokaei, N., Heider, M., & Husain, M. (2014). Attention is required for maintenance of feature-binding in visual working memory. The Quarterly Journal of Experimental Psychology, 67(6), 1191–1213. https://doi.org/10.1080/17470218.2013.852232. (PMID: 10.1080/17470218.2013.85223224266343)
معلومات مُعتمدة: NSF DGE-1343012 National Science Foundation; R01-EY025648 United States NH NIH HHS
فهرسة مساهمة: Keywords: Attention in learning; Memory: Long-term memory
تواريخ الأحداث: Date Created: 20210119 Date Completed: 20210503 Latest Revision: 20220716
رمز التحديث: 20221213
DOI: 10.3758/s13414-020-02236-3
PMID: 33462770
قاعدة البيانات: MEDLINE
الوصف
تدمد:1943-393X
DOI:10.3758/s13414-020-02236-3