دورية أكاديمية

Avocado oil (Persea americana) protects SH-SY5Y cells against cytotoxicity triggered by cortisol by the modulation of BDNF, oxidative stress, and apoptosis molecules.

التفاصيل البيبلوغرافية
العنوان: Avocado oil (Persea americana) protects SH-SY5Y cells against cytotoxicity triggered by cortisol by the modulation of BDNF, oxidative stress, and apoptosis molecules.
المؤلفون: Motta JR; Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil., Jung IEDC; Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil., Azzolin VF; Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil., Teixeira CF; Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil., Braun LE; Biogenomics Laboratory, Department of Morphology, Universidade Federal de Santa Maria, Santa Maria, Brazil., De Oliveira Nerys DA; Biogenomics Laboratory, Department of Morphology, Universidade Federal de Santa Maria, Santa Maria, Brazil., Motano MAE; Graduate Program Sanitary and Animal Production, Universidade do Oeste de Santa Catarina, Xanxerê, Brazil., Duarte MMMF; Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil.; Health Sciences Center, Universidade Luterana do Brasil, Santa Maria, Brazil., Maia-Ribeiro EA; Research Department, Fundação Universidade Aberta da Terceira Idade do Amazonas, Manaus, Brazil., da Cruz IBM; Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil., Barbisan F; Graduate Program in Gerontology, Universidade Federal de Santa Maria, Santa Maria, Brazil.; Pharmacology Graduate Program, Universidade Federal de Santa Maria, Santa Maria, Brazil.
المصدر: Journal of food biochemistry [J Food Biochem] 2021 Feb; Vol. 45 (2), pp. e13596. Date of Electronic Publication: 2021 Jan 22.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 7706045 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-4514 (Electronic) Linking ISSN: 01458884 NLM ISO Abbreviation: J Food Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: 2008- : Hoboken, NJ : Wiley
Original Publication: Westport, Conn. : Food & Nutrition Press
مواضيع طبية MeSH: Persea*/metabolism, Aged ; Apoptosis ; Brain-Derived Neurotrophic Factor/genetics ; Brain-Derived Neurotrophic Factor/metabolism ; Child ; Humans ; Hydrocortisone/pharmacology ; Oxidative Stress
مستخلص: Chronic psycho-environmental stress can induce neurological dysfunction due to an increase in cortisol levels. It is possible that some food supplements could attenuate its negative impact, such as avocado oil (AO), which is rich in fatty acids with beneficial effects on the brain. This hypothesis was tested by an in vitro model using undifferentiated neuroblastoma cells (SH-SY5Y) exposed to hydrocortisone (HC), an active cortisol molecule with and without AO-supplementation. Cortisol can induce oxidative stress, apoptosis events, and a lowering effect on brain-derived neurotrophic factor (BDNF), a neurogenic molecule. As AO protective effects on HC-exposed cells could involve these routes, some markers of these routes were compared among neuroblastoma cultures. In the first assay, the range concentrations of HC exposure that trigger cell mortality and range AO-concentrations that could revert the HC effect. AO at all concentrations tested (2-30 µg/ml) did not present a cytotoxic effect on SH-SY5Y cells, whereas HC at 0.3-10 ng/ml had a dose-dependent cytotoxic effect on these cells. From these results, HC at 10 ng/ml and AO at 5 µg/ml were chosen for mechanistic analysis. AO was able to decrease the oxidative molecules; however, both AO- and HC-induced differential and varied gene expression modulation of these enzymes. AO partially reverted the protein and gene expression of apoptotic markers that were higher in HC-exposed cells. AO also increases the BDNF levels, which are lower HC-exposed cultures. The results indicate that AO could be a beneficial supplement in situations where cortisol levels are elevated, including chronic psycho-environmental stress. PRACTICAL APPLICATIONS: Psychological chronic stress that induces high cortisol exposure has been linked to premature aging and decreased healthy life expectancy. Neurobiological models involving cortisol have suggested a neurotoxic effect of this molecule, increasing the risk of psychiatric and other CNTDs. This effect can have a high impact mainly in infants and elderly people. In child abuse situations, chronic cortisol exposure could induce extensive apoptosis events, causing impairment in synaptogenesis. In both age groups, chronic cortisol exposure increased the risk of psychiatric conditions, especially anxiety and major depression. However, it is possible that the negative effects associated with chronic cortisol exposure could be attenuated by some food supplements. This is the case for molecules acquired through diet, such as polyunsaturated fatty acids (PUFAs), including omega-3. As inadequate omega-3 levels in the brain can increase the risk factor for neuropsychiatric disorders, it is possible to infer that some from food supplements, such as avocado oil, could attenuate the neurotoxic effects of chronic cortisol exposure. This hypothesis was tested using an exploratory in vitro protocol, and the results suggested that avocado oil could be used as a cytoprotective food supplement by decreasing the oxidative stress and apoptotic events induced by cortisol.
(© 2021 Wiley Periodicals LLC.)
References: Algarve, T. D., Assmann, C. E., Cadoná, F. C., Machado, A. K., Manica-Cattani, M. F., Sato-Miyata, Y., Asano, T., Duarte, M. M. M. F., Ribeiro, E. E., Aigaki, T., & da Cruz, I. B. M. (2019). Guarana improves behavior and inflammatory alterations triggered by methylmercury exposure: An in vivo fruit fly and in vitro neural cells study. Environmental Science and Pollution Research, 26(15), 15069-15083. https://doi.org/10.1007/s11356-019-04881-0.
Angeloni, C., Malaguti, M., & Barbalace, M. C. (2017). Bioactivity of olive oil phenols in neuroprotection. International Journal of Molecular Sciences, 18(11). https://doi.org/10.3390/ijms18112230.
Aschbacher, K., O'Donovan, A., Wolkowitz, O. M., Dhabhar, F. S., Su, Y., & Epel, E. (2013). Good stress, bad stress and oxidative stress: Insights from anticipatory cortisol reactivity. Psychoneuroendocrinology, 38(9), 1698-1708. https://doi.org/10.1016/j.psyneuen.2013.02.004.
Azzolin, V. Ô. F., Barbisan, F., Lenz, L. S., Teixeira, C. F., Fortuna, M., Duarte, T., Duarte, M. M. F. M., & da Cruz, I. B. M. (2017). Effects of Pyridostigmine bromide on SH-SY5Y cells: An in vitro neuroblastoma neurotoxicity model. Mutation Research, 823, 1-10. https://doi.org/10.1016/j.mrgentox.2017.08.003.
Bagheri, H., Ghasemi, F., Barreto, G. E., Sathyapalan, T., Jamialahmadi, T., & Sahebkar, A. (2019). The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. BioFactors, https://doi.org/10.1002/biof.1597.
Banerjee, S., & Bhat, M. A. (2007). Neuron-glial interactions in blood-brain barrier formation. Annual Review of Neuroscience, 30, 235-258. https://doi.org/10.1146/annurev.neuro.30.051606.094345.
Barbisan, F., Motta, Jde R., Trott, A., Azzolin, V., Dornelles, E. B., Marcon, M., Algarve, T. D., Duarte, M. M. M. F., Mostardeiro, C. P., Unfer, T. C., Schott, K. L., & da Cruz, I. B. M. (2014). Methotrexate-related response on human peripheral blood mononuclear cells may be modulated by the Ala16Val-SOD2 gene polymorphism. PLoS One, 20:9(10), e107299. https://doi.org/10.1371/journal.pone.0107299.
Bhuvan, D. J., Alsherbiny, M. A., Perera, S., Low, M., Basu, A., Devi, O. A., Barooah, M. S., Li, C. G., & Papoutsis, K. (2019). The Odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants, 8(10), 426. https://doi.org/10.3390/antiox8100426.
Choi, W. S., Shin, P. G., Lee, J. H., & Kim, G. D. (2012). The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cellular Immunology, 280(2), 164-170. https://doi.org/10.1016/j.cellimm.2012.12.007.
Cirmi, S., Ferlazzo, N., Gugliandolo, A., Musumeci, L., Mazzon, E., Bramanti, A., & Navarra, M. (2019). Moringin from Moringa Oleifera seeds inhibits growth, arrests cell-cycle, and induces apoptosis of SH-SY5Y human neuroblastoma cells through the modulation of NF-κB and apoptotic related factors. International Journal of Molecular Sciences, 19, 20-28. https://doi.org/10.3390/ijms20081930.
D’Arcy, M.S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43, 582-592. https://doi.org/10.1002/cbin.11137.
De Mello, M. F. F. T., Pereira, D. E., Moura, R. L., da Silva, E. B., de Melo, F. A. L. T., Dias, C. C. Q., Silva, M. D. C. A., Oliveira, M. E. G. D., Viera, V. B., Pintado, M. M. E., & Santos, S. G. D. (2019). Maternal supplementation with avocado (Persea americana Mill.) pulp and oil alters reflex maturation, physical development, and offspring memory in rats. Frontiers in Neuroscience, 23, 13-19. https://doi.org/10.3389/fnins.2019.00009.
Egeland, M., Zunszain, A. P., & Pariante, C. M. (2015). Molecular mechanisms in the regulation of adult neurogenesis during stress. Nature Reviews Neuroscience, 16, 189-200. https://doi.org/10.1038/nrn385.
Guidance Document on Good In Vitro Method Practices (GIVIMP) (2018). http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2018)19&doclanguage=en. Accessed 12 April 2018.
Flores, M., Saravia, C., Vergara, C. E., Avila, F., Valdés, H., & Ortiz-Viedma, J. (2019). Avocado oil: Characteristics, properties, and applications. Molecules, 24(11). https://doi.org/10.3390/molecules24112172.
Ganguly, U., Ganguly, A., Sen, O., Ganguly, G., Cappai, R., Sahoo, A., & Chakrabarti, S. (2019). Dopamine cytotoxicity on SH-SY5Y cells: Involvement of α-Synuclein and relevance in the neurodegeneration of sporadic Parkinson's disease. Neurotoxicity Research, 35(4), 898-907. https://doi.org/10.1007/s12640-019-0001-0.
Gonulalan, E. M., Bayazeid, O., Yalcin, F. N., & Demirezer, L. O. (2018). The roles of valerenic acid on BDNF expression in the SH-SY5Y cell. Saudi Pharmaceutical Journal, 26(7), 960-964. https://doi.org/10.1016/j.jsps.2018.05.005.
Guillaume, S., Jaussent, I., Maimoun, L., Ryst, A., Seneque, M., Villain, L., Hamroun, D., Lefebvre, P., Renard, E., & Courtet, P. H. (2016). Associations between adverse childhood experiences and clinical characteristics of eating disorders. Scientific Reports, 6, https://doi.org/10.1038/srep35761.
Halliwell, B., & Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? British Journal of Clinical Pharmacology, 42, 231-255. https://doi.org/10.1038/sj.bjp.0705776.
Ham, S., Lee, Y., Jo, M., Kim, H., Kang, H., Jo, A., Lee, G. H., Mo, Y. J., Park, S. C., Lee, Y. S., & Shin, J. H. (2017). Hydrocortisone-induced parkin prevents dopaminergic cell death via the CREB pathway in a Parkinson’s disease model. Science Reports, 7, 525. https://doi.org/10.1038/s41598-017-00614-w.
Healy-Stoffel, M., & Levant, B. (2018). N-3 (Omega-3) fatty acids: Effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders. Current Drug Targets - CNS & Neurological Disorders, 17(3), 216-232. https://doi.org/10.2174/1871527317666180412153612.
Hindmarsh, P. C., & Charmandari, E. (2015). Variation in absorption and half-life of hydrocortisone influence plasma cortisol concentrations. Clinical Endocrinology, 82(4), 557-561. https://doi.org/10.1111/cen.12653.
Jentzsch, A. M., Bachmann, H., Fürst, P., & Biesalski, H. K. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radical Biology & Medicine, 20(2), 251-256. https://doi.org/10.1016/0891-5849(95)02043-8.
Kim, H. K., Chen, W., & Andreazza, A. C. (2015). The potential role of the NLRP3 inflammasome as a link between mitochondrial complex I dysfunction and inflammation in bipolar disorder. Neural Plasticity, 2015, 1-10. https://doi.org/10.1155/2015/408136.
Kovalevich, J., & Langford, D. (2013). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods in Molecular Biology, 1078(9-21), https://doi.org/10.1007/978-1-62703-640-5_2.
Kowiański, P., Lietzau, G., Czuba, E., Waśkow, M., Steliga, A., & Moryś, J. (2018). BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology, 38(3), 579-593. https://doi.org/10.1007/s10571-017-0510-4.
Latt, H. M., Matsushita, H., Morino, M., Koga, Y., Michiue, H., Nishiki, T., Tomizawa, K., & Matsui, H. (2018). Oxytocin inhibits corticosterone-induced apoptosis in primary hippocampal neurons. Neuroscience, 379, 383-389. https://doi.org/10.1016/j.neuroscience.2018.03.025.
Levine, R. L., Williams, J. A., Stadtman, E. P., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346-357. https://doi.org/10.1016/s0076-6879(94)33040-9.
Machado, A. K., Andreazza, A. C., da Silva, T. M., Boligon, A. A., do Nascimento, V., Scola, G., Duong, A., Cadoná, F. C., Ribeiro, E. E. & da Cruz, I.B.M. (2016). Neuroprotective effects of açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxidative Medicine and Cellular Longevity, 2016:8940850. https://doi.org/10.1155/2016/8940850.
Meyer, T., & Wirtz, P. H. (2018). Mechanisms of mitochondrial redox signaling in psychosocial stress-responsive systems: New insights into an old story. Antioxidants & Redox Signaling, 28(9), 760-772. https://doi.org/10.1089/ars.2017.7186.
Muthuraman, P. (2014). Effect of cortisol on caspases in the co-cultured C2C12 and 3T3-L1 cells. Applied Biochemistry and Biotechnology, 73(4), 980-988. https://doi.org/10.1007/s12010-014-0909-z.
Nam, Y. H., Rodriguez, I., Jeong, S. Y., Pham, T. N. M., Nuankaew, W., Kim, Y. H., Castañeda, R., Jeong, S. Y., Park, M. S., Lee, K. W., & Lee, J. S. (2019). Avocado oil extract modulates auditory hair cell function through the regulation of amino acid biosynthesis genes. Nutrients, 11(1), pii: E113. https://doi.org/10.3390/nu11010113.
Nicolella, H. D., Neto, F. R., Corrêa, M. B., & Tavares, D. C. (2017). Toxicogenetic study of Persea americana fruit pulp oil and its effect on genomic instability. Food and Chemical Toxicology, 101, 114-120. https://doi.org/10.1016/j.fct.2017.01.009.
Niraula, A., Sheridan, J. F., & Godbout, J. P. (2017). Microglia priming with aging and stress. Review Neuropsychopharmacology., 42(1), 318-333. https://doi.org/10.1038/npp.2016.185.
Ortega-Arellano, H. F., Jimenez-Del-Rio, M., & Velez-Pardo, C. (2019). Neuroprotective effects of methanolic extract of avocado Persea americana (var. Colinred) peel on paraquat-induced locomotor impairment, lipid peroxidation and shortage of life span in transgenic knockdown parkin drosophila melanogaster. Neurochemical Research, 44(8), 1986-1998. https://doi.org/10.1007/s11064-019-02835-z.
Ortiz-Avila, O., Esquivel-Martínez, M., Olmos-Orizaba, B. E., Saavedra-Molina, A., Rodriguez-Orozco, A. R., & Cortés-Rojo, C. (2015). Avocado oil improves mitochondrial function and decreases oxidative stress in brain of diabetic rats. Journal of Diabetes Research, 485759. https://doi.org/10.1155/2015/485759.
Ouanes, S., & Popp, J. (2019). High cortisol and the risk of dementia and Alzheimer's disease: A review of the literature. Frontiers in Aging Neuroscience, 11, 43. https://doi.org/10.3389/fnagi.2019.00043.
Pruessner, J. C., Dedovic, K., Pruessner, M., Lord, C., Buss, C., Collins, L., Dagher, A., & Lupien, S. J. (2010). Stress regulation in the central nervous system: Evidence from structural and functional neuroimaging studies in human populations - 2008 Curt Richter Award Winner. Psychoneuroendocrinology, 35(1), 179-191. https://doi.org/10.1016/j.psyneuen.2009.02.016.
Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer's Disease, 42, S125-S152. https://doi.org/10.3969/j.issn.1673-5374.2012.05.009.
Ruankham, W., Suwanjang, W., Wongchitrat, P., Prachayasittikul, V., Prachayasittikul, S., & Phopin, K. (2019). Sesamin and sesamol attenuate H2O2 -induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutritional Neuroscience, 1-12, https://doi.org/10.1080/1028415X.2019.1596613.
Russell, G., & Lightman, S. (2019). The human stress response. Nature Reviews Endocrinology, 15, 525-534. https://doi.org/10.1038/s41574-019-0228-0.
Scola, G., Laliberte, V. L., Kim, H. K., Pinguelo, A., Salvador, M., Young, L. T., & Andreazza, A. C. (2014). Vitis labrusca extract effects on cellular dynamics and redox modulations in a SH-SY5Y neuronal cell model: A similar role to lithium. Neurochemistry International, 79, 12-19. https://doi.org/10.1016/j.neuint.2014.10.002.
Singer, T., & Engert, V. (2018). It matters what you practice: Differential training effects on subjective experience, behavior, brain and body in the ReSource Project. Current Opinion in Psychology, 28, 151-158. https://doi.org/10.1016/j.copsyc.2018.12.005.
Snigdha, S., Smith, E. D., Prieto, G. A., & Cotman, C. W. (2012). Caspase-3 activation as a bifurcation point between plasticity and cell death. Neuroscience Bulletin, 28(1), 14-24. https://doi.org/10.1007/s12264-012-1057-5.
Sun, Y. X., Yang, J., Wang, P. Y., Li, Y. J., Xie, S. Y., & Sun, R. P. (2013). Cisplatin regulates SH-SY5Y cell growth through the downregulation of BDNF via miR-16. Oncology Reports., 30(5), 2343-2349. https://doi.org/10.3892/or.2013.2731.
Talbot, N. C., Powell, A. M., & Caperna, T. J. (2004). Comparison of colony-formation efficiency of bovine fetal fibroblast cell lines cultured with low oxygen, hydrocortisone, L-carnosine, bFGF, or different levels of FBS. Cloning and Stem Cells, 6(1), 37-47. https://doi.org/10.1089/15362300460743826.
Tan, C. X., Chong, G. H., Hamzah, H., & Ghazali, H. M. (2018). Effect of virgin avocado oil on diet-induced hypercholesterolemia in rats via 1 H NMR-based metabolomics approach. Phytotherapy Research, 32(11), 2264-2274. https://doi.org/10.1002/ptr.6164.
Veltman, E. M., Lamers, F., Comijs, H. C., Stek, M. L., Van Der Mast, R. C., & Rhebergen, D. (2018). Inflammatory markers and cortisol parameters across depressive subtypes in an older cohort. Journal of Affective Disorders, 234, 54-58. https://doi.org/10.1016/j.jad.2018.02.080.
Xicoy, H., Wieringa, B., & Martens, G. J. (2017). The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Molecular Neurodegeneration, 12(1). https://doi.org/10.1186/s13024-017-0149-0.
Yang, G., Li, J., Cai, Y., Yang, Z., Li, R., & Fu, W. (2018). Glycyrrhizic acid alleviates 6-hydroxydopamine and corticosterone-induced neurotoxicity in SH-SY5Y cells through modulating autophagy. Neurochemical Research, 43, 1914-1926. https://doi.org/10.1007/s11064-018-2609-5.
Yiallouris, A., Tsioutis, C., Agapidaki, E., Zafeiri, M., Agouridis, A. P., Ntourakis, D., & Johnson, E. O. (2019). Adrenal aging and its implications on stress responsiveness in humans. Frontier in Endocrinology, 10, 54. https://doi.org/10.3389/fendo.2019.00054.
Zhang, H., Wang, W., & Du, Q. (2019). Andrographolide attenuates bupivacaine-induced cytotoxicity in SH-SY5Y cells through preserving Akt/mTOR activity. Drug Design, Development and Therapy, 13, 1659-1666. https://doi.org/10.2147/DDDT.S201122.
فهرسة مساهمة: Keywords: apoptosis; fatty acids; nutrigenomics; oxidative stress
المشرفين على المادة: 0 (Brain-Derived Neurotrophic Factor)
WI4X0X7BPJ (Hydrocortisone)
تواريخ الأحداث: Date Created: 20210122 Date Completed: 20210708 Latest Revision: 20210708
رمز التحديث: 20231215
DOI: 10.1111/jfbc.13596
PMID: 33480081
قاعدة البيانات: MEDLINE
الوصف
تدمد:1745-4514
DOI:10.1111/jfbc.13596