دورية أكاديمية

Multi-omics-based prediction of hybrid performance in canola.

التفاصيل البيبلوغرافية
العنوان: Multi-omics-based prediction of hybrid performance in canola.
المؤلفون: Knoch D; Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, OT Gatersleben, Germany. knochd@ipk-gatersleben.de., Werner CR; The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK., Meyer RC; Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, OT Gatersleben, Germany., Riewe D; Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, OT Gatersleben, Germany.; Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, 14195, Berlin, Germany., Abbadi A; NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany.; Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363, Holtsee, Germany., Lücke S; Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363, Holtsee, Germany., Snowdon RJ; Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany., Altmann T; Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, OT Gatersleben, Germany.
المصدر: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2021 Apr; Vol. 134 (4), pp. 1147-1165. Date of Electronic Publication: 2021 Feb 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 0145600 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2242 (Electronic) Linking ISSN: 00405752 NLM ISO Abbreviation: Theor Appl Genet Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer
مواضيع طبية MeSH: Crosses, Genetic* , Genome, Plant* , Hybrid Vigor* , Metabolome* , Polymorphism, Single Nucleotide* , Transcriptome*, Brassica napus/*genetics, Brassica napus/growth & development ; Brassica napus/metabolism ; Hybridization, Genetic ; Models, Genetic ; Phenotype ; Plant Breeding ; Quantitative Trait Loci ; Seeds/genetics ; Seeds/growth & development ; Seeds/metabolism
مستخلص: Key Message: Complementing or replacing genetic markers with transcriptomic data and use of reproducing kernel Hilbert space regression based on Gaussian kernels increases hybrid prediction accuracies for complex agronomic traits in canola. In plant breeding, hybrids gained particular importance due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new top performing hybrids requires labour-intensive and costly breeding programmes, including testing of large numbers of experimental hybrids, the prediction of hybrid performance is of utmost interest to plant breeders. In this study, we tested the effectiveness of hybrid prediction models in spring-type oilseed rape (Brassica napus L./canola) employing different omics profiles, individually and in combination. To this end, a population of 950 F 1 hybrids was evaluated for seed yield and six other agronomically relevant traits in commercial field trials at several locations throughout Europe. A subset of these hybrids was also evaluated in a climatized glasshouse regarding early biomass production. For each of the 477 parental rapeseed lines, 13,201 single nucleotide polymorphisms (SNPs), 154 primary metabolites, and 19,479 transcripts were determined and used as predictive variables. Both, SNP markers and transcripts, effectively predict hybrid performance using (genomic) best linear unbiased prediction models (gBLUP). Compared to models using pure genetic markers, models incorporating transcriptome data resulted in significantly higher prediction accuracies for five out of seven agronomic traits, indicating that transcripts carry important information beyond genomic data. Notably, reproducing kernel Hilbert space regression based on Gaussian kernels significantly exceeded the predictive abilities of gBLUP models for six of the seven agronomic traits, demonstrating its potential for implementation in future canola breeding programmes.
References: Biol Rev Camb Philos Soc. 2010 Nov;85(4):935-56. (PMID: 20569253)
Bioinformatics. 2007 May 1;23(9):1164-7. (PMID: 17344241)
Bioinformatics. 2015 Jan 15;31(2):166-9. (PMID: 25260700)
Front Plant Sci. 2017 May 18;8:815. (PMID: 28572809)
Plant Biotechnol J. 2019 Jun;17(6):1106-1118. (PMID: 30467941)
Plant J. 2017 Apr;90(2):319-329. (PMID: 28122143)
Theor Appl Genet. 2012 Apr;124(6):1017-26. (PMID: 22159759)
G3 (Bethesda). 2016 Nov 8;6(11):3443-3453. (PMID: 27646704)
G3 (Bethesda). 2012 Nov;2(11):1405-13. (PMID: 23173092)
Front Genet. 2020 Jan 24;10:1294. (PMID: 32038702)
Theor Appl Genet. 2017 Sep;130(9):1927-1939. (PMID: 28647896)
PLoS Biol. 2012;10(4):e1001301. (PMID: 22509135)
Methods Mol Biol. 2007;358:19-38. (PMID: 17035678)
PLoS One. 2011;6(7):e21645. (PMID: 21747942)
Bioinformatics. 2017 Feb 15;33(4):545-546. (PMID: 27797758)
Theor Appl Genet. 2013 Feb;126(2):435-41. (PMID: 23052025)
Genetics. 2018 Apr;208(4):1373-1385. (PMID: 29363551)
Sci Rep. 2016 Feb 24;6:21732. (PMID: 26907211)
Plant Genome. 2018 Jul;11(2):. (PMID: 30025015)
Front Plant Sci. 2017 Sep 21;8:1633. (PMID: 28983306)
Breed Sci. 2018 Mar;68(2):258-267. (PMID: 29875610)
Theor Appl Genet. 2010 Jan;120(2):239-47. (PMID: 19911163)
Plant J. 2012 Sep;71(5):850-9. (PMID: 22540282)
Theor Appl Genet. 2014 Nov;127(11):2313-31. (PMID: 25301321)
Theory Biosci. 2012 Dec;131(4):281-5. (PMID: 22872506)
PLoS One. 2016 Jan 29;11(1):e0147769. (PMID: 26824924)
Plant Cell Environ. 2020 Feb;43(2):303-314. (PMID: 31472094)
Sci Rep. 2018 Aug 17;8(1):12309. (PMID: 30120288)
Breed Sci. 2014 May;64(1):48-59. (PMID: 24987290)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Theor Appl Genet. 2019 Apr;132(4):1211-1222. (PMID: 30656353)
Genet Res. 2000 Apr;75(2):249-52. (PMID: 10816982)
Nat Genet. 2017 Aug 30;49(9):1297-1303. (PMID: 28854179)
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4759-64. (PMID: 17360597)
PLoS One. 2016 Jun 06;11(6):e0156744. (PMID: 27271781)
Theor Appl Genet. 2007 Jun;115(1):27-34. (PMID: 17453172)
Heredity (Edinb). 2017 Sep;119(3):174-184. (PMID: 28590463)
Proc Natl Acad Sci U S A. 2006 May 2;103(18):6805-10. (PMID: 16641103)
PLoS One. 2012;7(9):e45293. (PMID: 23028912)
Theor Appl Genet. 2018 Feb;131(2):299-317. (PMID: 29080901)
Plant Biotechnol J. 2018 Feb;16(2):507-519. (PMID: 28703467)
Theor Appl Genet. 2016 Mar;129(3):641-51. (PMID: 26747048)
BMC Genomics. 2013 Sep 06;14:603. (PMID: 24010766)
Plant J. 2016 Dec;88(5):826-838. (PMID: 27520391)
Genetics. 2007 Dec;177(4):2389-97. (PMID: 18073436)
Front Plant Sci. 2015 Jan 20;5:770. (PMID: 25653655)
Genetics. 2013 Jul;194(3):597-607. (PMID: 23640517)
Heredity (Edinb). 2012 Nov;109(5):313-9. (PMID: 22892636)
Plant Sci. 2019 Jun;283:157-164. (PMID: 31128685)
Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):263-9. (PMID: 22436749)
Theor Appl Genet. 2016 Dec;129(12):2413-2427. (PMID: 27586153)
Front Plant Sci. 2018 Jun 27;9:891. (PMID: 29997644)
Plant J. 2016 Oct;88(2):219-227. (PMID: 27311694)
Theor Appl Genet. 2019 Apr;132(4):933-946. (PMID: 30498894)
Bioinformatics. 2012 Aug 1;28(15):2086-7. (PMID: 22689388)
Theor Appl Genet. 2012 Mar;124(5):825-33. (PMID: 22101908)
Genetika. 2012 Oct;48(10):1171-8. (PMID: 23270265)
Nat Genet. 2012 Jan 15;44(2):217-20. (PMID: 22246502)
Front Genet. 2017 Feb 21;8:15. (PMID: 28270831)
BMC Genomics. 2016 Mar 29;17:262. (PMID: 27025377)
Plant Biotechnol J. 2020 Nov;18(11):2345-2353. (PMID: 32367649)
Heredity (Edinb). 2019 Sep;123(3):395-406. (PMID: 30911139)
Nat Rev Genet. 2009 Aug;10(8):565-77. (PMID: 19584810)
Front Plant Sci. 2016 Jan 28;7:17. (PMID: 26858737)
Nat Rev Genet. 2015 Feb;16(2):85-97. (PMID: 25582081)
Plant Biotechnol J. 2020 Jan;18(1):68-82. (PMID: 31125482)
Trends Plant Sci. 2006 Feb;11(2):89-100. (PMID: 16406306)
Theor Appl Genet. 2013 Apr;126(4):1053-65. (PMID: 23328861)
Genetics. 2012 Apr;190(4):1491-501. (PMID: 22135352)
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12456-61. (PMID: 25114224)
Genetics. 2008 Jul;179(3):1547-58. (PMID: 18562665)
Plant Genome. 2018 Jul;11(2):. (PMID: 30025024)
Genetics. 2001 Apr;157(4):1819-29. (PMID: 11290733)
Plant J. 2012 Aug;71(4):669-83. (PMID: 22487254)
Science. 2014 Aug 22;345(6199):950-3. (PMID: 25146293)
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15624-9. (PMID: 26663911)
BMC Genomics. 2018 May 21;19(1):371. (PMID: 29783940)
Front Genet. 2019 Mar 14;10:189. (PMID: 30923535)
Theor Appl Genet. 2015 Jul;128(7):1297-306. (PMID: 25877519)
BMC Bioinformatics. 2011 May 23;12:186. (PMID: 21605355)
Genetics. 2014 Dec;198(4):1759-68. (PMID: 25324160)
Nat Protoc. 2006;1(1):387-96. (PMID: 17406261)
Plant Biotechnol J. 2019 May;17(5):906-913. (PMID: 30321482)
Nat Methods. 2015 Apr;12(4):357-60. (PMID: 25751142)
Theor Appl Genet. 2006 Jun;113(1):33-8. (PMID: 16614833)
Nat Rev Genet. 2014 Jan;15(1):34-48. (PMID: 24296534)
Theor Appl Genet. 2010 Jan;120(2):441-50. (PMID: 19911157)
Genetics. 2020 May;215(1):215-230. (PMID: 32152047)
BMC Bioinformatics. 2009 Dec 16;10:428. (PMID: 20015393)
Genetics. 2015 Oct;201(2):759-68. (PMID: 26219298)
Sci Rep. 2020 Mar 5;10(1):4131. (PMID: 32139810)
Heredity (Edinb). 2014 Jan;112(1):48-60. (PMID: 23572121)
Annu Rev Plant Biol. 2006;57:303-33. (PMID: 16669764)
Theor Appl Genet. 2010 Jan;120(2):271-81. (PMID: 19707740)
Front Plant Sci. 2017 Jun 07;8:963. (PMID: 28638399)
BMC Genet. 2011 Jan 26;12:15. (PMID: 21269439)
J Dairy Sci. 2008 Nov;91(11):4414-23. (PMID: 18946147)
PLoS One. 2014 Jan 07;9(1):e85435. (PMID: 24409329)
Trends Plant Sci. 2014 Sep;19(9):592-601. (PMID: 24970707)
Genetica. 2009 Jun;136(2):245-57. (PMID: 18704696)
Life Sci Alliance. 2019 Dec 13;3(1):. (PMID: 31836628)
J Integr Plant Biol. 2020 Mar;62(3):287-298. (PMID: 30916464)
PLoS One. 2009;4(4):e5220. (PMID: 19370148)
Genetics. 2014 Aug;197(4):1343-55. (PMID: 24850820)
Mol Biol Rep. 2012 May;39(5):5105-13. (PMID: 22286901)
Genetics. 2008 Apr;178(4):2289-303. (PMID: 18430950)
معلومات مُعتمدة: 234585441 Deutsche Forschungsgemeinschaft
فهرسة مساهمة: Keywords: Agronomic traits; Genomic best linear unbiased prediction (gBLUP); Heterosis; Hybrid prediction; Reproducing kernel Hilbert space regression (RKHS); Spring-type brassica napus (canola)
تواريخ الأحداث: Date Created: 20210201 Date Completed: 20210824 Latest Revision: 20220421
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7973648
DOI: 10.1007/s00122-020-03759-x
PMID: 33523261
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2242
DOI:10.1007/s00122-020-03759-x