دورية أكاديمية

Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection.

التفاصيل البيبلوغرافية
العنوان: Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection.
المؤلفون: Littmann ER; The Duchossois Family Institute, University of Chicago, Chicago, IL, USA., Lee JJ; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA., Denny JE; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Alam Z; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Maslanka JR; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Zarin I; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Matsuda R; Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA., Carter RA; Lucille Castori Center, Molecular Microbiology Core Facility, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Susac B; Lucille Castori Center, Molecular Microbiology Core Facility, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Saffern MS; Lucille Castori Center, Molecular Microbiology Core Facility, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Fett B; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA., Mattei LM; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA., Bittinger K; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA., Abt MC; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Michael.abt@pennmedicine.upenn.edu.
المصدر: Nature communications [Nat Commun] 2021 Feb 02; Vol. 12 (1), pp. 755. Date of Electronic Publication: 2021 Feb 02.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Clostridioides difficile/*pathogenicity, Animals ; CD4-Positive T-Lymphocytes/immunology ; CD4-Positive T-Lymphocytes/metabolism ; CD8-Positive T-Lymphocytes/metabolism ; Clostridium Infections/immunology ; Clostridium Infections/metabolism ; Feces/microbiology ; Forkhead Transcription Factors/metabolism ; Homeodomain Proteins/metabolism ; Inflammation/immunology ; Inflammation/metabolism ; Mice ; T-Lymphocytes, Regulatory/immunology ; T-Lymphocytes, Regulatory/metabolism
مستخلص: Fecal microbiota transplantation (FMT) is a successful therapeutic strategy for treating recurrent Clostridioides difficile infection. Despite remarkable efficacy, implementation of FMT therapy is limited and the mechanism of action remains poorly understood. Here, we demonstrate a critical role for the immune system in supporting FMT using a murine C. difficile infection system. Following FMT, Rag1 heterozygote mice resolve C. difficile while littermate Rag1 -/- mice fail to clear the infection. Targeted ablation of adaptive immune cell subsets reveal a necessary role for CD4 + Foxp3 + T-regulatory cells, but not B cells or CD8 + T cells, in FMT-mediated resolution of C. difficile infection. FMT non-responsive mice exhibit exacerbated inflammation, impaired engraftment of the FMT bacterial community and failed restoration of commensal bacteria-derived secondary bile acid metabolites in the large intestine. These data demonstrate that the host's inflammatory immune status can limit the efficacy of microbiota-based therapeutics to treat C. difficile infection.
References: Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011). (PMID: 21677749329808210.1038/nature10213)
Kamada, N., Seo, S. U., Chen, G. Y. & Nunez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013). (PMID: 2361882910.1038/nri3430)
Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018). (PMID: 29634945652920210.1016/j.ccell.2018.03.015)
Hartstra, A. V., Bouter, K. E., Backhed, F. & Nieuwdorp, M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38, 159–165 (2015). (PMID: 2553831210.2337/dc14-0769)
Bashiardes, S., Tuganbaev, T., Federici, S. & Elinav, E. The microbiome in anti-cancer therapy. Semin. Immunol. 32, 74–81 (2017). (PMID: 2843192010.1016/j.smim.2017.04.001)
Cammarota, G. et al. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy. Pharm. Ther. 149, 191–212 (2015). (PMID: 10.1016/j.pharmthera.2014.12.006)
Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012). (PMID: 23133377348691310.1371/journal.ppat.1002995)
Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013). (PMID: 24315484389739410.1016/j.cell.2013.11.024)
Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016). (PMID: 27315483510225010.1016/j.cell.2016.06.001)
Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). (PMID: 2400939710.1126/science.1241214)
Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015). (PMID: 26541610472165910.1126/science.aad1329)
Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015). (PMID: 26541606487328710.1126/science.aac4255)
Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015). (PMID: 2533787410.1038/nature13828)
Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013). (PMID: 2384250110.1038/nature12331)
Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008). (PMID: 10.1038/nature0700818509436)
Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000). (PMID: 1095878210.1126/science.289.5483.1352)
Sgritta, M. et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246–259 e246 (2019). (PMID: 3052282010.1016/j.neuron.2018.11.018)
Sefik, E. et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349, 993–997 (2015). (PMID: 26272906470093210.1126/science.aaa9420)
Mimee, M., Citorik, R. J. & Lu, T. K. Microbiome therapeutics - advances and challenges. Adv. Drug Deliv. Rev. 105, 44–54 (2016). (PMID: 27158095509377010.1016/j.addr.2016.04.032)
Gupta, S., Allen-Vercoe, E. & Petrof, E. O. Fecal microbiota transplantation: in perspective. Ther. Adv. Gastroenterol. 9, 229–239 (2016). (PMID: 10.1177/1756283X15607414)
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013). (PMID: 2332386710.1056/NEJMoa1205037)
Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015). (PMID: 2571416010.1056/NEJMoa1408913)
CDC. Antibiotic resistance threats in the United States, 2019 (Atlanta, GA, USA, 2019).
Guh, A. Y. et al. Trends in U.S. burden of clostridioides difficile infection and outcomes. N. Engl. J. Med. 382, 1320–1330 (2020). (PMID: 3224235710.1056/NEJMoa19102157861882)
Drekonja, D. M. et al. Comparative effectiveness of Clostridium difficile treatments: a systematic review. Ann. Intern. Med 155, 839–847 (2011). (PMID: 2218469110.7326/0003-4819-155-12-201112200-00007)
Dudukgian, H., Sie, E., Gonzalez-Ruiz, C., Etzioni, D. A. & Kaiser, A. M. C. difficile colitis–predictors of fatal outcome. J. Gastrointest. Surg. 14, 315–322 (2010). (PMID: 1993719210.1007/s11605-009-1093-2)
Viswanathan, V. K., Mallozzi, M. J. & Vedantam, G. Clostridium difficile infection: an overview of the disease and its pathogenesis, epidemiology and interventions. Gut Microbes 1, 234–242 (2010). (PMID: 21327030302360510.4161/gmic.1.4.12706)
Surawicz, C. M. et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 108, 478–498 (2013). quiz 499. (PMID: 2343923210.1038/ajg.2013.4)
Debast, S. B., Bauer, M. P. & Kuijper, E. J. European Society of Clinical Microbiology and Infectious Diseases European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol Infect. 20, 1–26 (2014). (PMID: 2411860110.1111/1469-0691.12418)
US Food and Drug Administration. Enforcement Policy Regarding Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation to Treat Clostridium difficile Infection Not Responsive to Standard Therapies. (Center for Biologics Evaluation and Research, 2016).
Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007). (PMID: 1804361410.1038/ismej.2007.3)
Schubert, A. M. et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio 5, e01021–01014 (2014). (PMID: 24803517401082610.1128/mBio.01021-14)
Seekatz, A. M. et al. Recovery of the gut microbiome following fecal microbiota transplantation. MBio 5, e00893–00814 (2014). (PMID: 24939885406825710.1128/mBio.00893-14)
Seekatz, A. M. et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 53, 64–73 (2018). (PMID: 29654837618582810.1016/j.anaerobe.2018.04.001)
Weingarden, A. R. et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G310–G319 (2014). (PMID: 2428496310.1152/ajpgi.00282.2013)
Weingarden, A. R. et al. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS ONE 11, e0147210 (2016). (PMID: 26789728472048110.1371/journal.pone.0147210)
Khan, M. Y., Dirweesh, A., Khurshid, T. & Siddiqui, W. J. Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 30, 1309–1317 (2018). (PMID: 3013816110.1097/MEG.0000000000001243)
Seekatz, A. M. et al. Fecal microbiota transplantation eliminates clostridium difficile in a murine model of relapsing disease. Infect. Immun. 83, 3838–3846 (2015). (PMID: 26169276456762110.1128/IAI.00459-15)
Abt, M. C. et al. Innate immune defenses mediated by two ilc subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 18, 27–37 (2015). (PMID: 26159718453764410.1016/j.chom.2015.06.011)
Hasegawa, M. et al. Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 41, 620–632 (2014). (PMID: 25367575422030310.1016/j.immuni.2014.09.010)
Leslie, J. L., Vendrov, K. C., Jenior, M. L. & Young, V. B. The gut microbiota is associated with clearance of Clostridium difficile infection independent of adaptive immunity. mSphere 4, e00698-18 (2019). (PMID: 30700514635481110.1128/mSphereDirect.00698-18)
Chen, X. et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984–1992 (2008). (PMID: 1884894110.1053/j.gastro.2008.09.002)
Korn, L. L. et al. Conventional CD4+ T cells regulate IL-22-producing intestinal innate lymphoid cells. Mucosal. Immunol. 7, 1045–1057 (2014). (PMID: 24448096410718010.1038/mi.2013.121)
Janda, J. M. & Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol 45, 2761–2764 (2007). (PMID: 17626177204524210.1128/JCM.01228-07)
Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007). (PMID: 1800572610.1016/j.chom.2007.06.010)
Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007). (PMID: 1776050110.1371/journal.pbio.0050244)
Johnston, P. F., Gerding, D. N. & Knight, K. L. Protection from Clostridium difficile infection in CD4 T Cell- and polymeric immunoglobulin receptor-deficient mice. Infect. Immun. 82, 522–531 (2014). (PMID: 24478068391137410.1128/IAI.01273-13)
Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008). (PMID: 1851092310.1016/j.cell.2008.05.009)
Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008). (PMID: 18854238259758910.1016/j.chom.2008.09.009)
Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007). (PMID: 1713604510.1038/ni1428)
Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y. & Rudensky, A. Y. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J. Exp. Med. 210, 2435–2466 (2013). (PMID: 24127486380493410.1084/jem.20130762)
Battaglioli, E. J. et al. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci. Transl. Med. 10 (2018).
Fletcher, J. R., Erwin, S., Lanzas, C. & Theriot, C. M. Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model. mSphere 3, eaam7019 (2018).
Ferreyra, J. A. et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 16, 770–777 (2014). (PMID: 25498344485934410.1016/j.chom.2014.11.003)
Nagao-Kitamoto, H. et al. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat. Med. 26, 608–617 (2020).
Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006). (PMID: 1629935110.1194/jlr.R500013-JLR200)
Thanissery, R., Winston, J. A. & Theriot, C. M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 45, 86–100 (2017). (PMID: 28279860546689310.1016/j.anaerobe.2017.03.004)
Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045-15 (2016).
Francis, M. B., Allen, C. A. & Sorg, J. A. Muricholic acids inhibit Clostridium difficile spore germination and growth. PLoS ONE 8, e73653 (2013). (PMID: 24040011376773710.1371/journal.pone.0073653)
Sorg, J. A. & Sonenshein, A. L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192, 4983–4990 (2010). (PMID: 20675492294452410.1128/JB.00610-10)
Winter, S. E., Lopez, C. A. & Baumler, A. J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 14, 319–327 (2013). (PMID: 23478337361565710.1038/embor.2013.27)
Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010). (PMID: 20864996294617410.1038/nature09415)
Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013). (PMID: 23393266400411110.1126/science.1232467)
Rivera-Chavez, F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19, 443–454 (2016). (PMID: 27078066483241910.1016/j.chom.2016.03.004)
Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011). (PMID: 2196956310.1073/pnas.11078571083198331)
Spees, A. M. et al. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. MBio 4, e00430-13 (2013).
Hughes, E. R. & Winter, S. E. Enterococcus faecalis: E. coli’s Siderophore-Inducing Sidekick. Cell Host Microbe 20, 411–412 (2016). (PMID: 27736638548252710.1016/j.chom.2016.09.018)
Gillis, C. C. et al. Dysbiosis-associated change in host metabolism generates lactate to support salmonella growth. Cell Host Microbe 23, 54–64 e56 (2018). (PMID: 2927617210.1016/j.chom.2017.11.006)
Byndloss, M. X. et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017). (PMID: 28798125564295710.1126/science.aam9949)
Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014). (PMID: 2444544910.1038/ncomms4114)
Staley, C., Weingarden, A. R., Khoruts, A. & Sadowsky, M. J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 101, 47–64 (2017). (PMID: 2788833210.1007/s00253-016-8006-6)
Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008). (PMID: 18245298229320010.1128/JB.01765-07)
Wilson, K. H. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J. Clin. Microbiol. 18, 1017–1019 (1983). (PMID: 663045827095910.1128/jcm.18.4.1017-1019.1983)
Song, X. et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature 577, 410–415 (2020). (PMID: 3187584810.1038/s41586-019-1865-0)
Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020). (PMID: 32461639754072110.1038/s41586-020-2193-0)
Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019). (PMID: 31776512694901910.1038/s41586-019-1785-z)
Burrello, C. et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 9, 5184 (2018). (PMID: 30518790628157710.1038/s41467-018-07359-8)
Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634–643 (2018). (PMID: 28539351)
Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811 e797 (2017). (PMID: 2786688010.1053/j.gastro.2016.11.010)
Hargreaves, K. R. & Clokie, M. R. Clostridium difficile phages: still difficult? Front. Microbiol. 5, 184 (2014). (PMID: 24808893400943610.3389/fmicb.2014.00184)
Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299 e288 (2019). (PMID: 30763538688500410.1016/j.chom.2019.01.008)
Carlson, P. E. Jr. Regulatory considerations for fecal microbiota transplantation products. Cell Host Microbe 27, 173–175 (2020). (PMID: 3205378710.1016/j.chom.2020.01.018)
Di Bella, S., Gouliouris, T. & Petrosillo, N. Fecal microbiota transplantation (FMT) for Clostridium difficile infection: focus on immunocompromised patients. J. Infect. Chemother. 21, 230–237 (2015). (PMID: 2570353210.1016/j.jiac.2015.01.011)
Kelly, C. R. et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 109, 1065–1071 (2014). (PMID: 24890442553774210.1038/ajg.2014.133)
Moss, E. L. et al. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLoS ONE 12, e0182585 (2017). (PMID: 28827811556511010.1371/journal.pone.0182585)
Staley, C. et al. Durable long-term bacterial engraftment following encapsulated fecal microbiota transplantation to treat Clostridium difficile infection. MBio 10, e01586-19 (2019). (PMID: 31337728665055910.1128/mBio.01586-19)
Popoff, M. R., Rubin, E. J., Gill, D. M. & Boquet, P. Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect. Immun. 56, 2299–2306 (1988). (PMID: 313716625956410.1128/iai.56.9.2299-2306.1988)
Sorg, J. A. & Dineen, S. S. Laboratory maintenance of Clostridium difficile. Curr. Protoc. Microbio.l Chapter 9, Unit9A 1 (2009).
Jarchum, I., Liu, M., Lipuma, L. & Pamer, E. G. Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect. Immun. 79, 1498–1503 (2011). (PMID: 21245274306752910.1128/IAI.01196-10)
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013). (PMID: 2395577210.1038/nmeth.2604)
Lee, Y. J. et al. Protective factors in the intestinal microbiome against Clostridium difficile infection in recipients of allogeneic hematopoietic stem cell transplantation. J. Infect. Dis. 215, 1117–1123 (2017). (PMID: 28498996542637510.1093/infdis/jix011)
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013). (PMID: 23630581363253010.1371/journal.pone.0061217)
Team, R. C. R.: A language and environment for statistical computing. 2013 [cited]Available from: http://www.R-project.org/ .
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (New York, Springer-Verlag, 2016).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019). (PMID: 31341288701518010.1038/s41587-019-0209-9)
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). (PMID: 23329690360331810.1093/molbev/mst010)
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010). (PMID: 20224823283573610.1371/journal.pone.0009490)
Friedman, E. S. et al. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology 155, 1741–1752 e1745 (2018). (PMID: 3014442910.1053/j.gastro.2018.08.022)
Ramsteijn, A. S., Jasarevic, E., Houwing, D. J., Bale, T. L. & Olivier, J. D. Antidepressant treatment with fluoxetine during pregnancy and lactation modulates the gut microbiome and metabolome in a rat model relevant to depression. Gut Microbes 11, 735–753 (2020). (PMID: 31971855752430510.1080/19490976.2019.1705728)
Ni, J. et al. A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci. Transl. Med. 9, eaah6888 (2017).
معلومات مُعتمدة: P30 CA008748 United States CA NCI NIH HHS; R00 AI125786 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Forkhead Transcription Factors)
0 (Foxp3 protein, mouse)
0 (Homeodomain Proteins)
128559-51-3 (RAG-1 protein)
تواريخ الأحداث: Date Created: 20210203 Date Completed: 20210301 Latest Revision: 20230128
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7854624
DOI: 10.1038/s41467-020-20793-x
PMID: 33531483
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-20793-x