دورية أكاديمية

Immunopathological Roles of Neutrophils in Virus Infection and COVID-19.

التفاصيل البيبلوغرافية
العنوان: Immunopathological Roles of Neutrophils in Virus Infection and COVID-19.
المؤلفون: Cui SN; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China.; Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio., Tan HY; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital and Institute, Beijing, China., Fan GC; Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
المصدر: Shock (Augusta, Ga.) [Shock] 2021 Sep 01; Vol. 56 (3), pp. 345-351.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 9421564 Publication Model: Print Cited Medium: Internet ISSN: 1540-0514 (Electronic) Linking ISSN: 10732322 NLM ISO Abbreviation: Shock Subsets: MEDLINE
أسماء مطبوعة: Publication: 2002- : Philadelphia : Lippincott Williams & Wilkins
Original Publication: Augusta, GA : BioMedical Press, [1994-
مواضيع طبية MeSH: SARS-CoV-2*, COVID-19/*immunology , COVID-19/*virology , Neutrophils/*virology, Animals ; Cytokine Release Syndrome ; Cytokines/immunology ; Humans ; Immune System ; Immunity, Innate ; Inflammation ; Intercellular Adhesion Molecule-1/immunology ; Lymphocytes/immunology ; Mice ; Neutrophils/metabolism ; Pathogen-Associated Molecular Pattern Molecules/immunology ; Thrombosis
مستخلص: Abstract: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spread around the world and is currently affecting global public health. Clinical evidence indicates that the elevated number of peripheral neutrophils and higher ratio of neutrophils-to-lymphocytes are correlated with severe outcomes in COVID-19 patients, suggesting the possible immunopathological role of neutrophils during SARS-CoV-2 infection. As an abundant innate immune cell type, neutrophils are well known for their contributions to antimicrobial defense. However, their dysfunction is also associated with different inflammatory signatures during the pathogenesis of infection. Herein, in this mini-review, we summarize the recent progress on the potential role of neutrophils during COVID-19-associated inflammatory responses. In particular, we highlight the interactions between neutrophils and viruses as well as the relationship of neutrophils with cytokine storm and thrombosis in COVID-19 patients. Lastly, we discuss the importance of neutrophils as potential therapeutic targets for COVID-19.
Competing Interests: The authors report no conflicts of interest.
(Copyright © 2021 by the Shock Society.)
References: Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395 (10223):507–513, 2020.
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 180 (7):934–943, 2020.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (10223):497–506, 2020.
Zhao Z, Xie J, Yin M, Yang Y, He H, Jin T, Li W, Zhu X, Xu J, Zhao C, et al. Clinical and laboratory profiles of 75 hospitalized patients with novel coronavirus disease 2019 in Hefei, China. medRxiv 2020; 2020.03.01.20029785.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323 (11):1061–1069, 2020.
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8 (4):420–422, 2020.
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369 (6504):718–724, 2020.
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 20 (6):355–362, 2020.
Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, Guo L, Yang J, Wang C, Jiang S, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27 (6):883.e2–890.e2, 2020.
Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, Luo M, Chen L, Zhao Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect 81 (1):e6–e12, 2020.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395 (10229):1054–1062, 2020.
Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med 18 (1):206, 2020.
Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, Mostyka M, Baxter-Stoltzfus A, Borczuk AC, Loda M, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136 (10):1169–1179, 2020.
Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 8 (7):681–686, 2020.
Kobayashi SD, Malachowa N, DeLeo FR. Influence of microbes on neutrophil life and death. Front Cell Infect Microbiol 7:159, 2017.
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 19 (4):253–275, 2020.
Giacalone VD, Margaroli C, Mall MA, Tirouvanziam R. Neutrophil adaptations upon recruitment to the lung: new concepts and implications for homeostasis and disease. Int J Mol Sci 21 (3):851, 2020.
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid cells during viral infections and inflammation. Viruses 11 (2):168, 2019.
Carignan D, Herblot S, Laliberté-Gagné M, Bolduc M, Duval M, Savard P, Leclerc D. Activation of innate immunity in primary human cells using a plant virus derived nanoparticle TLR7/8 agonist. Nanomedicine 14 (7):2317–2327, 2018.
Saitoh S, Miyake K. Regulatory molecules required for nucleotide-sensing Toll-like receptors. Immunol Rev 227 (1):32–43, 2009.
Wang JP, Bowen GN, Padden C, Cerny A, Finberg RW, Newburger PE, Kurt-Jones EA. Toll-like receptor-mediated activation of neutrophils by influenza A virus. Blood 112 (5):2028–2034, 2008.
Hashimoto Y, Moki T, Takizawa T, Shiratsuchi A, Nakanishi Y. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol 178 (4):2448–2457, 2007.
Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, Baric RS. Toll-like receptor 3 Signaling via trif contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 6 (3):e00638–e00715, 2015.
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17 (3):638–650, 2013.
Tamassia N, Le Moigne V, Rossato M, Donini M, McCartney S, Calzetti F, Colonna M, Bazzoni F, Cassatella MA. Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils. J Immunol 181 (9):6563–6573, 2008.
Lifland AW, Jung J, Alonas E, Zurla C, Crowe JE Jr, Santangelo PJ. Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS. J Virol 86 (15):8245–8258, 2012.
Yoboua F, Martel A, Duval A, Mukawera E, Grandvaux N. Respiratory syncytial virus-mediated NF-kappa B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK beta. J Virol 84 (14):7267–7277, 2010.
Schett G, Neurath MF. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun 9 (1):3261, 2018.
Juliana A, Zonneveld R, Plötz FB, van Meurs M, Wilschut J. Neutrophil-endothelial interactions in respiratory syncytial virus bronchiolitis: an understudied aspect with a potential for prediction of severity of disease. J Clin Virol 123:104258, 2020.
Villenave R, Shields MD, Power UF. Respiratory syncytial virus interaction with human airway epithelium. Trends Microbiol 21 (5):238–244, 2013.
Chang CH, Huang Y, Anderson R. Activation of vascular endothelial cells by IL-1alpha released by epithelial cells infected with respiratory syncytial virus. Cell Immunol 221 (1):37–41, 2003.
Funchal GA, Jaeger N, Czepielewski RS, Machado MS, Muraro SP, Stein RT, Bonorino CB, Porto BN. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One 10 (4):e0124082, 2015.
Russell CD, Unger SA, Walton M, Schwarze J. The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev 30 (2):481–502, 2017.
Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179 (1):199–210, 2011.
Zhu B, Zhang R, Li C, Jiang L, Xiang M, Ye Z, Kita H, Melnick AM, Dent AL, Sun J. BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection. Proc Natl Acad Sci U S A 116 (24):11888–11893, 2019.
Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just the common cold. JAMA 323 (8):707–708, 2020.
Sallenave JM, Guillot L. Innate immune signaling and proteolytic pathways in the resolution or exacerbation of SARS-CoV-2 in Covid-19: key therapeutic targets? Front Immunol 2020; (11):1229.
Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 75:2829–2845, 2020.
Chu H, Zhou J, Wong BH, Li C, Chan JF, Cheng ZS, Yang D, Wang D, Lee AC, Li C, et al. Middle east respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 213 (6):904–914, 2016.
Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, Gong L, Zhang Y, Cui H-Y, Geng J-J, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxi 2020; 2020.03.14.988345.
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 217 (6):e20200652, 2020.
Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B, Sève P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev 19 (7):102567, 2020.
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 39 (7):2085–2094, 2020.
Sokolowska M, Lukasik Z, Agache I, Akdis CA, Akdis D, Akdis M, Barcik W, Brough H, Eiwegger T, Eliaszewicz A, et al. Immunology of COVID-19: mechanisms, clinical outcome, diagnostics and perspectives-a report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 75:2445–2476, 2020.
Liew PX, Kubes P. The neutrophil's role during health and disease. Physiol Rev 99 (2):1223–1248, 2019.
Ley K, Smith E, Stark MA. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res 34 (3):229–242, 2006.
Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22 (3):285–294, 2005.
Pelaia C, Tinello C, Vatrella A, De Sarro G, Pelaia G. Lung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications. Ther Adv Respir Dis 14:1753466620933508, 2020.
Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med 17 (11):1381–1390, 2011.
Sandoval R, Lazcano P, Ferrari F, Pinto-Pardo N, Billault CG, Utreras E. TNF-α increases production of reactive oxygen species through Cdk5 activation in nociceptive neurons. Front Physiol 9:65, 2018.
Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul 77:100741, 2020.
Akgun E, Tuzuner MB, Sahin B, Kilercik M, Kulah C, Cakiroglu HN, Serteser M, Unsal I, Baykal AT. Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS-CoV-2 patients. PLoS One 15 (10):e0240012, 2020.
Yaqinuddin A, Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med Hypotheses 143:109906, 2020.
Eda H, Burnette BL, Shimada H, Hope HR, Monahan JB. Interleukin-1β-induced interleukin-6 production in A549 cells is mediated by both phosphatidylinositol 3-kinase and interleukin-1 receptor-associated kinase-4. Cell Biol Int 35 (4):355–358, 2011.
Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol 189 (5):846–847, 2020.
Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I, Schröder AS, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 173 (4):268–277, 2020.
Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 220:1–13, 2020.
Noubouossie DF, Reeves BN, Strahl BD, Key NS. Neutrophils: back in the thrombosis spotlight. Blood 133 (20):2186–2197, 2019.
Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respiration 93 (3):212–225, 2017.
Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 210 (7):1283–1299, 2013.
Seitz R, Gürtler L, Schramm W. Thromboinflammation in COVID-19: Can α 2 -macroglobulin help to control the fire? J Thromb Haemost 19:10, 2020.
Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16 (8):887–896, 2010.
Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, et al. Neutrophil extracellular traps in COVID-19. JCI Insight 5 (11):e138999, 2020.
Price LC, McCabe C, Garfield B, Wort SJ. Thrombosis and COVID-19 pneumonia: the clot thickens!. Eur Respir J 56 (1):2001608, 2020.
Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, Liaw PC. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 34 (9):1977–1984, 2014.
de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 16 (1):19–27, 2019.
Ward PA, Fattahi F. New strategies for treatment of infectious sepsis. J Leukoc Biol 106 (1):187–192, 2019.
Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118 (7):1952–1961, 2011.
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8 (5):475–481, 2020.
Kaynar AM, Houghton AM, Lum EH, Pitt BR, Shapiro SD. Neutrophil elastase is needed for neutrophil emigration into lungs in ventilator-induced lung injury. Am J Respir Cell Mol Biol 39 (1):53–60, 2008.
Polverino E, Rosales-Mayor E, Dale GE, Dembowsky K, Torres A. The role of neutrophil elastase inhibitors in lung diseases. Chest 152 (2):249–262, 2017.
Lee JM, Yeo CD, Lee HY, Rhee CK, Kim IK, Lee DG, Lee SH, Kim JW. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. J Anesth 31 (3):397–404, 2017.
Tagami T, Tosa R, Omura M, Fukushima H, Kaneko T, Endo T, Rinka H, Murai A, Yamaguchi J, Yoshikawa K, et al. Effect of a selective neutrophil elastase inhibitor on mortality and ventilator-free days in patients with increased extravascular lung water: a post hoc analysis of the PiCCO Pulmonary Edema Study. J Intensive Care 2 (1):67, 2014.
Available at: https://www.botanical.jp/library_view.php?library_num=679 . Accessed May 22, 2020.
المشرفين على المادة: 0 (Cytokines)
0 (Pathogen-Associated Molecular Pattern Molecules)
126547-89-5 (Intercellular Adhesion Molecule-1)
تواريخ الأحداث: Date Created: 20210203 Date Completed: 20210906 Latest Revision: 20230824
رمز التحديث: 20230825
مُعرف محوري في PubMed: PMC8354486
DOI: 10.1097/SHK.0000000000001740
PMID: 33534399
قاعدة البيانات: MEDLINE
الوصف
تدمد:1540-0514
DOI:10.1097/SHK.0000000000001740