دورية أكاديمية

Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster.

التفاصيل البيبلوغرافية
العنوان: Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster.
المؤلفون: Shaposhnikov MV; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation.; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Zemskaya NV; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Koval LA; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Schegoleva EV; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Yakovleva DV; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Ulyasheva NS; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Gorbunova AA; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Minnikhanova NR; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation., Moskalev AA; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation. amoskalev@ib.komisc.ru.; Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation. amoskalev@ib.komisc.ru.
المصدر: Biogerontology [Biogerontology] 2021 Apr; Vol. 22 (2), pp. 197-214. Date of Electronic Publication: 2021 Feb 05.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 100930043 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6768 (Electronic) Linking ISSN: 13895729 NLM ISO Abbreviation: Biogerontology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht ; Boston : Kluwer Academic, c2000-
مواضيع طبية MeSH: Cystathionine gamma-Lyase*/genetics , Hydrogen Sulfide*, Animals ; Cystathionine beta-Synthase/genetics ; Cysteine ; Drosophila melanogaster/genetics
مستخلص: Endogenous hydrogen sulfide (H 2 S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H 2 S homeostasis, therefore, interventions to the processes of H 2 S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-β-synthase and cystathionine-γ-lyase genes and treatment with precursors of H 2 S synthesis cysteine (Cys) and N-acetyl-L-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H 2 S metabolism may be associated with the complex interaction between beneficial action of H 2 S production and prevention of adverse effects of excess H 2 S production by Cys and NAC treatment.
References: Admasu TD et al (2018) Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling. Dev Cell 47:67–79. https://doi.org/10.1016/j.devcel.2018.09.001. (PMID: 10.1016/j.devcel.2018.09.00130269951)
Albertini E, Koziel R, Durr A, Neuhaus M, Jansen-Durr P (2012) Cystathionine beta synthase modulates senescence of human endothelial cells. Aging (Albany NY) 4:664–673. (PMID: 10.18632/aging.100491)
Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinf 9:465. https://doi.org/10.1186/1471-2105-9-465. (PMID: 10.1186/1471-2105-9-465)
Austad SN, Bartke A (2015) Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology 62:40–46. https://doi.org/10.1159/000381472. (PMID: 10.1159/00038147225968226)
Avanesian A, Khodayari B, Felgner JS, Jafari M (2010) Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster. Biogerontology 11:45–52. https://doi.org/10.1007/s10522-009-9227-1. (PMID: 10.1007/s10522-009-9227-119430925)
Barardo D et al (2017) The DrugAge database of aging-related drugs. Aging Cell 16:594–597. https://doi.org/10.1111/acel.12585. (PMID: 10.1111/acel.12585282999085418190)
Baskar R, Li L, Moore PK (2007) Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. FASEB J 21:247–255. https://doi.org/10.1096/fj.06-6255com. (PMID: 10.1096/fj.06-6255com17116745)
Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97. https://doi.org/10.3109/10408448409029321. (PMID: 10.3109/104084484090293216378532)
Brack C, Bechter-Thüring E, Labuhn M (1997) N-Acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cell Mol Life Sci 53:960–966. https://doi.org/10.1007/pl00013199. (PMID: 10.1007/pl000131999447249)
Budde MW, Roth MB (2010) Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. Mol Biol Cell 21:212–217. https://doi.org/10.1091/mbc.E09-03-0199. (PMID: 10.1091/mbc.E09-03-0199198898402801715)
Budde MW, Roth MB (2011) The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide. Genetics 189:521–532. https://doi.org/10.1534/genetics.111.129841. (PMID: 10.1534/genetics.111.129841218408523189795)
Castillo-Quan JI et al (2019) A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc Natl Acad Sci USA 116:20817–20819. https://doi.org/10.1073/pnas.1913212116. (PMID: 10.1073/pnas.191321211631570569)
Chen CQ, Xin H, Zhu YZ (2007) Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 28:1709–1716. https://doi.org/10.1111/j.1745-7254.2007.00629.x. (PMID: 10.1111/j.1745-7254.2007.00629.x17959020)
Chen X et al (2017) Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci Rep 7:13248. https://doi.org/10.1038/s41598-017-13251-0. (PMID: 10.1038/s41598-017-13251-0290385365643337)
Danilov A, Shaposhnikov M, Plyusnina E, Kogan V, Fedichev P, Moskalev A (2013) Selective anticancer agents suppress aging in Drosophila. Oncotarget 4:1507–1526. (PMID: 10.18632/oncotarget.1272)
de Cabo R, Diaz-Ruiz A (2020) A central role for the gasotransmitter H2S in aging. Cell Metab 31:10–12. https://doi.org/10.1016/j.cmet.2019.11.015. (PMID: 10.1016/j.cmet.2019.11.01531951564)
de Magalhães JP, Toussaint O (2004) GenAge: a genomic and proteomic network map of human ageing. FEBS Lett 571:243–247. https://doi.org/10.1016/j.febslet.2004.07.006. (PMID: 10.1016/j.febslet.2004.07.00615280050)
Desjardins D et al (2017) Antioxidants reveal an inverted U-shaped dose-response relationship between reactive oxygen species levels and the rate of aging in Caenorhabditis elegans. Aging Cell 16:104–112. https://doi.org/10.1111/acel.12528. (PMID: 10.1111/acel.1252827683245)
DiNicolantonio JJ, OKeefe JH, McCarty MF (2017) Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: a novel way to promote cardiovascular health. Open Heart 4:e000600. https://doi.org/10.1136/openhrt-2017-000600. (PMID: 10.1136/openhrt-2017-000600286746325471864)
Dóka É et al (2020) Control of protein function through oxidation and reduction of persulfidated states. Sci Adv 6:eaax8358. https://doi.org/10.1126/sciadv.aax8358. (PMID: 10.1126/sciadv.aax8358319119466938701)
Dombkowski RA, Russell MJ, Schulman AA, Doellman MM, Olson KR (2005) Vertebrate phylogeny of hydrogen sulfide vasoactivity. Am J Physiol Regul Integr Comp Physiol 288:R243-252. https://doi.org/10.1152/ajpregu.00324.2004. (PMID: 10.1152/ajpregu.00324.200415345473)
Du Y, Liu XH, Zhu HC, Wang L, Wang ZS, Ning JZ, Xiao CC (2019) Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats. Iranian J Basic Med Sci 22:99–105.
Edwards C et al (2015) Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 16:8. https://doi.org/10.1186/s12863-015-0167-2. (PMID: 10.1186/s12863-015-0167-2256436264328591)
Ezeriņa D, Takano Y, Hanaoka K, Urano Y, Dick TP (2018) N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H 2 S and sulfane sulfur production. Cell Chem Biol 25(447–459):e444. https://doi.org/10.1016/j.chembiol.2018.01.011. (PMID: 10.1016/j.chembiol.2018.01.011)
Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290. https://doi.org/10.1126/science.1059497. (PMID: 10.1126/science.105949711292860)
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H 2 S signaling through persulfidation. Chem Rev 118:1253–1337. https://doi.org/10.1021/acs.chemrev.7b00205. (PMID: 10.1021/acs.chemrev.7b0020529112440)
Flurkey K, Astle CM, Harrison DE (2010) Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 65:1275–1284. https://doi.org/10.1093/gerona/glq155. (PMID: 10.1093/gerona/glq15520819793)
Fu L, Liu K, He J, Tian C, Yu X, Yang J (2020) Direct proteomic mapping of cysteine persulfidation. Antioxid Redox Signal 33:1061–1076. https://doi.org/10.1089/ars.2019.7777. (PMID: 10.1089/ars.2019.777731411056)
Gaitanidis A, Dimitriadou A, Dowse H, Sanyal S, Duch C, Consoulas C (2019) Longitudinal assessment of health-span and pre-death morbidity in wild type Drosophila. Aging (Albany NY) 11:1850–1873. (PMID: 10.18632/aging.101880)
Garratt M (2020) Why do sexes differ in lifespan extension? Sex-specific pathways of aging and underlying mechanisms for dimorphic responses. Nutr Healthy Aging 5:247–259. https://doi.org/10.3233/NHA-190067. (PMID: 10.3233/NHA-190067)
Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397. https://doi.org/10.1016/j.arr.2005.04.001. (PMID: 10.1016/j.arr.2005.04.00116024299)
Han SK et al (2016) OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7:56147–56152. (PMID: 10.18632/oncotarget.11269)
Hine C et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132–144. https://doi.org/10.1016/j.cell.2014.11.048. (PMID: 10.1016/j.cell.2014.11.04825542313)
Ibrahim H, Serag A, Farag MA (2021) Emerging analytical tools for the detection of the third gasotransmitter H 2 S, a comprehensive review. J Adv Res 27:137–153. https://doi.org/10.1016/j.jare.2020.05.018. (PMID: 10.1016/j.jare.2020.05.01833318873)
Jain SK, Huning L, Micinski D (2014) Hydrogen sulfide upregulates glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione and inhibits interleukin-1β secretion in monocytes exposed to high glucose levels. Metab Syndr Relat Disord 12:299–302. https://doi.org/10.1089/met.2014.0022. (PMID: 10.1089/met.2014.0022246658214050455)
Janssens GE, Houtkooper RH (2020) Identification of longevity compounds with minimized probabilities of side effects. Biogerontology 21:709–719. https://doi.org/10.1007/s10522-020-09887-7. (PMID: 10.1007/s10522-020-09887-7325621147541369)
Johnson TE, de Castro E, Hegi de Castro S, Cypser J, Henderson S, Tedesco P (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36:1609–1617. https://doi.org/10.1016/S0531-5565(01)00144-9. (PMID: 10.1016/S0531-5565(01)00144-911672983)
Kabil H, Kabil O, Banerjee R, Harshman LG, Pletcher SD (2011) Increased transsulfuration mediates longevity and dietary restriction in Drosophila. Proc Natl Acad Sci USA 108:16831–16836. https://doi.org/10.1073/pnas.1102008108. (PMID: 10.1073/pnas.110200810821930912)
Kabil O, Banerjee R (2014) Enzymology of H 2 S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782. https://doi.org/10.1089/ars.2013.5339. (PMID: 10.1089/ars.2013.5339236008443910450)
Ke X et al (2017) Heat shock protein 90/Akt pathway participates in the cardioprotective effect of exogenous hydrogen sulfide against high glucose-induced injury to H9c2 cells. Int J Mol Med 39:1001–1010. https://doi.org/10.3892/ijmm.2017.2891. (PMID: 10.3892/ijmm.2017.289128204829)
Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713. https://doi.org/10.1016/j.cell.2014.10.039. (PMID: 10.1016/j.cell.2014.10.039254171464852871)
Kimura H (2020) Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 177:720–733. https://doi.org/10.1111/bph.14579. (PMID: 10.1111/bph.1457930657595)
Landis GN, Doherty D, Tower J (2020) Analysis of Drosophila melanogaster lifespan. Methods Mol Biol 2144:47–56. https://doi.org/10.1007/978-1-0716-0592-9_4. (PMID: 10.1007/978-1-0716-0592-9_432410023)
Liu D et al (2014) Hydrogen sulfide promotes proliferation and neuronal differentiation of neural stem cells and protects hypoxia-induced decrease in hippocampal neurogenesis. Pharmacol Biochem Behav 116:55–63. https://doi.org/10.1016/j.pbb.2013.11.009. (PMID: 10.1016/j.pbb.2013.11.00924246910)
Longchamp A et al (2018) Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H 2 S production. Cell 173(117–129):e114. https://doi.org/10.1016/j.cell.2018.03.001. (PMID: 10.1016/j.cell.2018.03.001)
Longen S, Beck KF, Pfeilschifter J (2016a) H 2 S-induced thiol-based redox switches: biochemistry and functional relevance for inflammatory diseases. Pharmacol Res 111:642–651. https://doi.org/10.1016/j.phrs.2016.07.026. (PMID: 10.1016/j.phrs.2016.07.02627468648)
Longen S, Richter F, Kohler Y, Wittig I, Beck KF, Pfeilschifter J (2016b) Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H 2 S releasing donors in mammalian. Cells Sci Rep 6:29808. https://doi.org/10.1038/srep29808. (PMID: 10.1038/srep2980827411966)
Longo VD (2003) The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 38:807–811. https://doi.org/10.1016/S0531-5565(03)00113-X. (PMID: 10.1016/S0531-5565(03)00113-X12855292)
Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50:163–170. (PMID: 5910392)
Mathew ND, Schlipalius DI, Ebert PR (2011) Sulfurous gases as biological messengers and toxins: comparative genetics of their metabolism in model organisms. J Toxicol 2011:394970. https://doi.org/10.1155/2011/394970. (PMID: 10.1155/2011/394970221319873216388)
McBean GJ (2012) The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids 42:199–205. https://doi.org/10.1007/s00726-011-0864-8. (PMID: 10.1007/s00726-011-0864-82136993921369939)
Mehta CR, Patel NR, Tsiatis AA (1984) Exact significance testing to establish treatment equivalence with ordered categorical data. Biometrics 40:819–825. (PMID: 10.2307/2530927)
Miller DL, Budde MW, Roth MB (2011) HIF-1 and SKN-1 coordinate the transcriptional response to hydrogen sulfide in Caenorhabditis elegans. PLoS ONE 6:e25476. https://doi.org/10.1371/journal.pone.0025476. (PMID: 10.1371/journal.pone.0025476219804733183046)
Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 104:20618–20622. https://doi.org/10.1073/pnas.0710191104. (PMID: 10.1073/pnas.071019110418077331)
Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C (2013a) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27:601–611. https://doi.org/10.1096/fj.12-216507. (PMID: 10.1096/fj.12-21650723104984)
Módis K, Wolanska K, Vozdek R (2013b) Hydrogen sulfide in cell signaling, signal transduction, cellular bioenergetics and physiology in C. elegans. Gen Physiol Biophys 32:1–22. https://doi.org/10.4149/gpb_2013001. (PMID: 10.4149/gpb_201300123531831)
Mokhtari V, Afsharian P, Shahhoseini M, Kalantar SM, Moini A (2017) A review on various uses of N-acetyl cysteine. Cell J 19:11–17. (PMID: 28367412)
Moskalev A (2020) Is anti-ageing drug discovery becoming a reality? Expert Opin Drug Discov 15:135–138. https://doi.org/10.1080/17460441.2020.1702965. (PMID: 10.1080/17460441.2020.170296531822135)
Moskalev A et al (2015a) Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging (Albany NY) 7:616–628. (PMID: 10.18632/aging.100799)
Moskalev A et al (2015b) Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging 7:616–628. (PMID: 10.18632/aging.100799)
Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M (2017) Geroprotectors: a unified concept and screening approaches. Aging Dis 8:354–363. (PMID: 10.14336/AD.2016.1022)
Moskalev A et al (2016) Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 15:407–415. https://doi.org/10.1111/acel.12463. (PMID: 10.1111/acel.12463269702344854916)
Mun J, Kang HM, Jung J, Park C (2019) Role of hydrogen sulfide in cerebrovascular alteration during aging. Arch Pharm Res 42:446–454. https://doi.org/10.1007/s12272-019-01135-y. (PMID: 10.1007/s12272-019-01135-y30900149)
Ng LT, Ng LF, Tang RMY, Barardo D, Halliwell B, Moore PK, Gruber J (2020) Lifespan and healthspan benefits of exogenous H 2 S in C. elegans are independent from effects downstream of eat-2 mutation. NPJ Aging Mech Dis 6:6. https://doi.org/10.1038/s41514-020-0044-8. (PMID: 10.1038/s41514-020-0044-8325662457287109)
Oh SI, Park JK, Park SK (2015) Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in Caenorhabditis elegans. Clinics (Sao Paulo) 70:380–386. https://doi.org/10.6061/clinics/2015(05)13. (PMID: 10.6061/clinics/2015(05)13)
Panthi S, Chung HJ, Jung J, Jeong NY (2016) Physiological importance of hydrogen sulfide: emerging potent neuroprotector and neuromodulator. Oxid Med Cell Longev 2016:9049782. https://doi.org/10.1155/2016/9049782. (PMID: 10.1155/2016/9049782274134234931096)
Paul BD, Snyder SH, Kashfi K (2021) Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 38:101772. https://doi.org/10.1016/j.redox.2020.101772. (PMID: 10.1016/j.redox.2020.10177233137711)
Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790:1005–1014. https://doi.org/10.1016/j.bbagen.2009.06.003. (PMID: 10.1016/j.bbagen.2009.06.003195240162789432)
Perridon BW, Leuvenink HG, Hillebrands JL, van Goor H, Bos EM (2016) The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 8:2264–2289. (PMID: 10.18632/aging.101026)
Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL (2011) The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol 46:441–452. https://doi.org/10.1016/j.exger.2011.01.005. (PMID: 10.1016/j.exger.2011.01.005212966483104016)
Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D (2010) The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age (Dordr) 32:467–481. https://doi.org/10.1007/s11357-010-9150-z. (PMID: 10.1007/s11357-010-9150-z)
Pushpakumar S, Kundu S, Sen U (2014) Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem 21:3662–3672. https://doi.org/10.2174/0929867321666140706142335. (PMID: 10.2174/0929867321666140706142335250051835539954)
Qabazard B, Ahmed S, Li L, Arlt VM, Moore PK, Stürzenbaum SR (2013) C. elegans aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl-2. PLoS ONE 8:e80135. https://doi.org/10.1371/journal.pone.0080135. (PMID: 10.1371/journal.pone.0080135242603463832670)
Qabazard B et al (2014) Hydrogen sulfide is an endogenous regulator of aging in Caenorhabditis elegans. Antioxid Redox Signal 20:2621–2630. https://doi.org/10.1089/ars.2013.5448. (PMID: 10.1089/ars.2013.5448240934964025568)
Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429:543–561. https://doi.org/10.1016/j.jmb.2016.12.015. (PMID: 10.1016/j.jmb.2016.12.01528013031)
Shaposhnikov M, Proshkina E, Koval L, Zemskaya N, Zhavoronkov A, Moskalev A (2018a) Overexpression of CBS and CSE genes affects lifespan, stress resistance and locomotor activity in Drosophila melanogaster. Aging (Albany NY) 10:3260–3272. (PMID: 10.18632/aging.101630)
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA (2018b) Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY) 10:2428–2458. (PMID: 10.18632/aging.101561)
Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D, Evgen’ev M (2020) Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Cell Stress Chaperon 25:305–315. https://doi.org/10.1007/s12192-020-01074-4. (PMID: 10.1007/s12192-020-01074-4)
Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H 2 S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466. https://doi.org/10.1074/jbc.M109.010868. (PMID: 10.1074/jbc.M109.010868195314792755967)
Smith JE 3rd, Cronmiller C (2001) The Drosophila daughterless gene autoregulates and is controlled by both positive and negative cis regulation. Development 128:4705–4714. (PMID: 11731451)
Snijder PM et al (2016) Overexpression of cystathionine gamma-lyase suppresses detrimental effects of spinocerebellar ataxia type 3. Mol Med 21:758–768. https://doi.org/10.2119/molmed.2015.00221. (PMID: 10.2119/molmed.2015.0022126467707)
Sun HJ, Wu ZY, Nie XW, Bian JS (2019) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10:1568. https://doi.org/10.3389/fphar.2019.01568. (PMID: 10.3389/fphar.2019.0156832038245)
Tabassum R, Jeong NY, Jung J (2020) Therapeutic importance of hydrogen sulfide in age-associated neurodegenerative diseases. Neural Regen Res 15:653–662. https://doi.org/10.4103/1673-5374.266911. (PMID: 10.4103/1673-5374.26691131638087)
Testai L, Citi V, Martelli A, Brogi S, Calderone V (2020) Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 160:105125. https://doi.org/10.1016/j.phrs.2020.105125. (PMID: 10.1016/j.phrs.2020.10512532783975)
Tower J (2017) Sex-specific gene expression and life span regulation. Trends Endocrinol Metab 28:735–747. https://doi.org/10.1016/j.tem.2017.07.002. (PMID: 10.1016/j.tem.2017.07.002287800025667568)
Vaiserman AM, Lushchak OV, Koliada AK (2016) Anti-aging pharmacology: promises and pitfalls. Ageing Res Rev 31:9–35. https://doi.org/10.1016/j.arr.2016.08.004. (PMID: 10.1016/j.arr.2016.08.00427524412)
Van Voorhies WA, Curtsinger JW, Rose MR (2006) Do longevity mutants always show trade-offs? Exp Gerontol 41:1055–1058. https://doi.org/10.1016/j.exger.2006.05.006. (PMID: 10.1016/j.exger.2006.05.00616790333)
Viscomi C et al (2010) Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med 16:869–871. https://doi.org/10.1038/nm.2188. (PMID: 10.1038/nm.218820657580)
Wang C, Li Q, Redden DT, Weindruch R, Allison DB (2004) Statistical methods for testing effects on “maximum lifespan.” Mech Ageing Dev 125:629–632. https://doi.org/10.1016/j.mad.2004.07.003. (PMID: 10.1016/j.mad.2004.07.00315491681)
Wang R (2002) Two’s company, three’s a crowd: can H 2 S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798. https://doi.org/10.1096/fj.02-0211hyp. (PMID: 10.1096/fj.02-0211hyp12409322)
Wodarz A, Hinz U, Engelbert M, Knust E (1995) Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82:67–76. (PMID: 10.1016/0092-8674(95)90053-5)
Wong R, Piper MD, Wertheim B, Partridge L (2009) Quantification of food intake in Drosophila. PLoS ONE 4:e6063. https://doi.org/10.1371/journal.pone.0006063. (PMID: 10.1371/journal.pone.0006063195571702698149)
Wu D, Si W, Wang M, Lv S, Ji A, Li Y (2015) Hydrogen sulfide in cancer: friend or foe? Nitric Oxide 50:38–45. https://doi.org/10.1016/j.niox.2015.08.004. (PMID: 10.1016/j.niox.2015.08.00426297862)
Wu D, Wang H, Teng T, Duan S, Ji A, Li Y (2018) Hydrogen sulfide and autophagy: a double edged sword. Pharmacol Res 131:120–127. https://doi.org/10.1016/j.phrs.2018.03.002. (PMID: 10.1016/j.phrs.2018.03.00229514056)
Xin D et al (2018) l-Cysteine suppresses hypoxia-ischemia injury in neonatal mice by reducing glial activation, promoting autophagic flux and mediating synaptic modification via H 2 S formation. Brain Behav Immun 73:222–234. https://doi.org/10.1016/j.bbi.2018.05.007. (PMID: 10.1016/j.bbi.2018.05.00729751053)
Yang G et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919. https://doi.org/10.1089/ars.2012.4645. (PMID: 10.1089/ars.2012.464523176571)
Yang Q, He GW (2019) Imbalance of homocysteine and H 2 S: significance, mechanisms, and therapeutic promise in vascular injury. Oxid Med Cell Longev 2019:7629673. https://doi.org/10.1155/2019/7629673. (PMID: 10.1155/2019/7629673318858166893243)
Zatsepina O et al (2020) Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster. Redox Biol 36:101654. https://doi.org/10.1016/j.redox.2020.101654. (PMID: 10.1016/j.redox.2020.101654327690107414014)
Zhang Y, Tang ZH, Ren Z, Qu SL, Liu MH, Liu LS, Jiang ZS (2013) Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol 33:1104–1113. https://doi.org/10.1128/MCB.01215-12. (PMID: 10.1128/MCB.01215-12232973463592015)
Zivanovic J et al (2019) Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metab 30(1152–1170):e1113. https://doi.org/10.1016/j.cmet.2019.10.007. (PMID: 10.1016/j.cmet.2019.10.007)
معلومات مُعتمدة: 17-74-30030 Russian Science Foundation
فهرسة مساهمة: Keywords: Anti-aging intervention; Drosophila melanogaster; Hydrogen sulfide; Lifespan extension
المشرفين على المادة: EC 4.2.1.22 (Cystathionine beta-Synthase)
EC 4.4.1.1 (Cystathionine gamma-Lyase)
K848JZ4886 (Cysteine)
YY9FVM7NSN (Hydrogen Sulfide)
تواريخ الأحداث: Date Created: 20210205 Date Completed: 20210917 Latest Revision: 20211220
رمز التحديث: 20231215
DOI: 10.1007/s10522-021-09911-4
PMID: 33544267
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6768
DOI:10.1007/s10522-021-09911-4