دورية أكاديمية

IL-10 Signaling in the Tumor Microenvironment of Ovarian Cancer.

التفاصيل البيبلوغرافية
العنوان: IL-10 Signaling in the Tumor Microenvironment of Ovarian Cancer.
المؤلفون: Batchu RB; Wayne State University School of Medicine, Detroit, MI, USA. bb9067@wayne.edu.; John D. Dingell VA Medical Center, Detroit, MI, USA. bb9067@wayne.edu., Gruzdyn OV; Wayne State University School of Medicine, Detroit, MI, USA.; John D. Dingell VA Medical Center, Detroit, MI, USA., Kolli BK; Wayne State University School of Medicine, Detroit, MI, USA.; John D. Dingell VA Medical Center, Detroit, MI, USA.; Med Manor Organics Pvt. Ltd., Hyderabad, India., Dachepalli R; Med Manor Organics Pvt. Ltd., Hyderabad, India., Umar PS; Med Manor Organics Pvt. Ltd., Hyderabad, India., Rai SK; Med Manor Organics Pvt. Ltd., Hyderabad, India., Singh N; Med Manor Organics Pvt. Ltd., Hyderabad, India., Tavva PS; Med Manor Organics Pvt. Ltd., Hyderabad, India., Weaver DW; Wayne State University School of Medicine, Detroit, MI, USA., Gruber SA; Wayne State University School of Medicine, Detroit, MI, USA.; John D. Dingell VA Medical Center, Detroit, MI, USA.
المصدر: Advances in experimental medicine and biology [Adv Exp Med Biol] 2021; Vol. 1290, pp. 51-65.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 0121103 Publication Model: Print Cited Medium: Print ISSN: 0065-2598 (Print) Linking ISSN: 00652598 NLM ISO Abbreviation: Adv Exp Med Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
مواضيع طبية MeSH: Interleukin-10* , Ovarian Neoplasms*/therapy, Carcinoma, Ovarian Epithelial ; Dendritic Cells ; Female ; Humans ; Signal Transduction ; Tumor Microenvironment
مستخلص: Unlike other malignancies, ovarian cancer (OC) creates a complex tumor microenvironment with distinctive peritoneal ascites consisting of a mixture of several immunosuppressive cells which impair the ability of the patient's immune system to fight the disease. The poor survival rates observed in advanced stage OC patients and the lack of effective conventional therapeutic options have been attributed in large part to the immature dendritic cells (DCs), IL-10 secreting regulatory T cells, tumor-associated macrophages, myeloid-derived suppressor cells, and cancer stem cells that secrete inhibitory cytokines. This review highlights the critical role played by the intraperitoneal presence of IL-10 in the generation of an immunosuppressive tumor microenvironment. Further, the effect of antibody neutralization of IL-10 on the efficacy of DC and chimeric antigen receptor T-cell vaccines will be discussed. Moreover, we will review the influence of IL-10 in the promotion of cancer stemness in concert with the NF-κB signaling pathway with regard to OC progression. Finally, understanding the role of IL-10 and its crosstalk with various cells in the ascitic fluid may contribute to the development of novel immunotherapeutic approaches with the potential to kill drug-resistant OC cells while minimizing toxic side effects.
References: Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. (PMID: 10.3322/caac.21590)
Babayeva A, Braicu EI, Grabowski JP et al (2018) Clinical outcome after completion surgery in patients with ovarian cancer: the Charite experience. Int J Gynecol Cancer 28(8):1491–1497. (PMID: 3009570810.1097/IGC.0000000000001328)
Carduner L, Leroy-Dudal J, Picot CR, Gallet O, Carreiras F, Kellouche S (2014) Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependent on alphav integrins. Clin Exp Metastasis 31(6):675–688. (PMID: 2494695010.1007/s10585-014-9658-1)
Yan L, Anderson GM, DeWitte M, Nakada MT (2006) Therapeutic potential of cytokine and chemokine antagonists in cancer therapy. Eur J Cancer 42(6):793–802. (PMID: 1652471810.1016/j.ejca.2006.01.013)
Trumpfheller C, Longhi MP, Caskey M et al (2012) Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J Intern Med 271(2):183–192. (PMID: 22126373326131210.1111/j.1365-2796.2011.02496.x)
Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22. (PMID: 2213616810.1146/annurev-immunol-100311-102839)
Chan CW, Housseau F (2008) The ‘kiss of death’ by dendritic cells to cancer cells. Cell Death Differ 15(1):58–69. (PMID: 1794802910.1038/sj.cdd.4402235)
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. (PMID: 1240740610.1038/ni1102-991)
Hamanishi J, Mandai M, Konishi I (2016) Immune checkpoint inhibition in ovarian cancer. Int Immunol 28(7):339–348. (PMID: 2705547010.1093/intimm/dxw020)
Doo DW, Norian LA, Arend RC (2019) Checkpoint inhibitors in ovarian cancer: a review of preclinical data. Gynecol Oncol Rep 29:48–54. (PMID: 31312712660979810.1016/j.gore.2019.06.003)
Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. (PMID: 4856023485602310.1038/nrc3239)
Li L, Ma Y, Xu Y (2019) Follicular regulatory T cells infiltrated the ovarian carcinoma and resulted in CD8 T cell dysfunction dependent on IL-10 pathway. Int Immunopharmacol 68:81–87. (PMID: 3061617010.1016/j.intimp.2018.12.051)
Norling L, Serhan C (2010) Profiling in resolving inflammatory exudates identifies novel anti-inflammatory and pro-resolving mediators and signals for termination. J Intern Med 268(1):15–24. (PMID: 20497301)
Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296. (PMID: 4504432450443210.1016/j.ccr.2012.03.003)
Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022. (PMID: 24048123411872510.1038/ni.2703)
Deng X, Zhang P, Liang T, Deng S, Chen X, Zhu L (2015) Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARgamma and NF-kappaB pathways. Int J Mol Med 36(2):449–454. (PMID: 2603568910.3892/ijmm.2015.2230)
Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. (PMID: 2121918510.1146/annurev-immunol-031210-101324)
House CD, Hernandez L, Annunziata CM (2015) In vitro enrichment of ovarian cancer tumor-initiating cells. J Vis Exp 96.
Syn N, Wang L, Sethi G, Thiery JP, Goh BC (2016) Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 37(7):606–617. (PMID: 2715771610.1016/j.tips.2016.04.006)
Arum CJ, Anderssen E, Viset T et al (2010) Cancer immunoediting from immunosurveillance to tumor escape in microvillus-formed niche: a study of syngeneic orthotopic rat bladder cancer model in comparison with human bladder cancer. Neoplasia 12(6):434–442. (PMID: 20563246288749610.1593/neo.91824)
Wang W, Kryczek I, Dostal L et al (2016) Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165(5):1092–1105. (PMID: 271331652713316510.1016/j.cell.2016.04.009)
Jammal MP, Martins-Filho A, Silveira TP, Murta EF, Nomelini RS (2016) Cytokines and prognostic factors in epithelial ovarian cancer. Clin Med Insights Oncol 10:71–76. (PMID: 27512342497376510.4137/CMO.S38333)
Rabinovich A, Medina L, Piura B, Huleihel M (2010) Expression of IL-10 in human normal and cancerous ovarian tissues and cells. Eur Cytokine Netw 21(2):122–128. (PMID: 20430716)
Krishnan V, Berek JS, Dorigo O (2017) Immunotherapy in ovarian cancer. Curr Probl Cancer 41(1):48–63. (PMID: 2816900410.1016/j.currproblcancer.2016.11.003)
Wang DH, Guo L, Wu XH (2015) Checkpoint inhibitors in immunotherapy of ovarian cancer. Tumour Biol 36(1):33–39. (PMID: 2540961810.1007/s13277-014-2848-2)
Schwab CL, English DP, Roque DM, Pasternak M, Santin AD (2014) Past, present and future targets for immunotherapy in ovarian cancer. Immunotherapy 6(12):1279–1293. (PMID: 25524384431261410.2217/imt.14.90)
Ghoneum A, Afify H, Salih Z, Kelly M, Said N (2018) Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 9(32):22832–22849. (PMID: 29854318597826810.18632/oncotarget.25126)
Roy T, Paul S, Baral RN, Chattopadhyay U, Biswas R (2007) Tumor associated release of interleukin-10 alters the prolactin receptor and down-regulates prolactin responsiveness of immature cortical thymocytes. J Neuroimmunol 186(1–2):112–120. (PMID: 1744240710.1016/j.jneuroim.2007.03.011)
Hagemann T, Robinson SC, Thompson RG, Charles K, Kulbe H, Balkwill FR (2007) Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Mol Cancer Ther 6(7):1993–2002. (PMID: 1762042910.1158/1535-7163.MCT-07-0118)
Dobrzanski MJ, Rewers-Felkins KA, Samad KA et al (2012) Immunotherapy with IL-10- and IFN-gamma-producing CD4 effector cells modulate “natural” and “inducible” CD4 TReg cell subpopulation levels: observations in four cases of patients with ovarian cancer. Cancer Immunol Immunother 61(6):839–854. (PMID: 2208334510.1007/s00262-011-1128-x22083345)
Mustea A, Braicu EI, Koensgen D et al (2009) Monitoring of IL-10 in the serum of patients with advanced ovarian cancer: results from a prospective pilot-study. Cytokine 45(1):8–11. (PMID: 1907103010.1016/j.cyto.2008.10.01919071030)
Zhu X, Ma D, Zhang J et al (2010) Elevated interleukin-21 correlated to Th17 and Th1 cells in patients with immune thrombocytopenia. J Clin Immunol 30(2):253–259. (PMID: 1999796710.1007/s10875-009-9353-119997967)
Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y (2004) Cytokines in cancer immunity and immunotherapy. Immunol Rev 202(1):275–293. (PMID: 1554640010.1111/j.0105-2896.2004.00199.x15546400)
Yigit R, Figdor CG, Zusterzeel PL, Pots JM, Torensma R, Massuger LF (2011) Cytokine analysis as a tool to understand tumour-host interaction in ovarian cancer. Eur J Cancer 47(12):1883–1889. (PMID: 2151414810.1016/j.ejca.2011.03.02621514148)
Bushley AW, Ferrell R, McDuffie K et al (2004) Polymorphisms of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and IL-18 and the risk of ovarian cancer. Gynecol Oncol 95(3):672–679. (PMID: 1558198010.1016/j.ygyno.2004.08.02415581980)
Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248(4960):1230–1234. (PMID: 216155910.1126/science.21615592161559)
Lane D, Matte I, Garde-Granger P, Bessette P, Piche A (2018) Ascites IL-10 promotes ovarian cancer cell migration. Cancer Microenviron 11(2–3):115–124. (PMID: 30039195625061510.1007/s12307-018-0215-3)
Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett 367(2):103–107. (PMID: 2618828110.1016/j.canlet.2015.07.00926188281)
Zhou J, Ye F, Chen H, Lv W, Gan N (2007) The expression of interleukin-10 in patients with primary ovarian epithelial carcinoma and in ovarian carcinoma cell lines. J Int Med Res 35(3):290–300. (PMID: 1759385610.1177/147323000703500302)
Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo MJ, Selvan SR (2011) Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res 51(2–3):170–182. (PMID: 2213985210.1007/s12026-011-8262-6)
Hart KM, Byrne KT, Molloy MJ, Usherwood EM, Berwin B (2011) IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer. Front Immunol 2:29. (PMID: 22566819334200110.3389/fimmu.2011.00029)
Zhang L, Liu W, Wang X, Wang X, Sun H (2019) Prognostic value of serum IL-8 and IL-10 in patients with ovarian cancer undergoing chemotherapy. Oncol Lett 17(2):2365–2369. (PMID: 30719112)
Li FZ, Dhillon AS, Anderson RL, McArthur G, Ferrao PT (2015) Phenotype switching in melanoma: implications for progression and therapy. Front Oncol 5:31. (PMID: 25763355432742010.3389/fonc.2015.00031)
Park GB, Chung YH, Kim D (2017) Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells. Oncol Rep 37(5):3137–3145. (PMID: 2835010410.3892/or.2017.553328350104)
Liu CY, Xu JY, Shi XY et al (2013) M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig 93(7):844–854. (PMID: 2375212910.1038/labinvest.2013.6923752129)
Gemelli C, Marani TZ, Bicciato S et al (2014) MafB is a downstream target of the IL-10/STAT3 signaling pathway, involved in the regulation of macrophage de-activation. Biochimi Biophys Acta 1843(5):955–964. (PMID: 10.1016/j.bbamcr.2014.01.021)
Liu Y, Gong W, Yang ZY et al (2017) Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis 22(4):544–557. (PMID: 2818838710.1007/s10495-016-1334-228188387)
Lo H-W, Hsu S-C, Xia W et al (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67(19):9066–9076. (PMID: 17909010257096110.1158/0008-5472.CAN-07-0575)
Santoiemma PP, Powell DJ Jr (2015) Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol Ther 16(6):807–820. (PMID: 25894333462293110.1080/15384047.2015.1040960)
Ghisoni E, Imbimbo M, Zimmermann S, Valabrega G (2019) Ovarian cancer immunotherapy: turning up the heat. Int J Mol Sci 20(12):2927. (PMID: 662810610.3390/ijms201229276628106)
Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. (PMID: 203038782030387810.1016/j.cell.2010.01.025)
Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426. (PMID: 1789876010.1038/nature06175)
Chen YL, Chang MC, Chen CA, Lin HW, Cheng WF, Chien CL (2012) Depletion of regulatory T lymphocytes reverses the imbalance between pro- and anti-tumor immunities via enhancing antigen-specific T cell immune responses. PLoS One 7(10):e47190. (PMID: 23082146347481910.1371/journal.pone.0047190)
Chae CS, Teran-Cabanillas E, Cubillos-Ruiz JR (2017) Dendritic cell rehab: new strategies to unleash therapeutic immunity in ovarian cancer. Cancer Immunol Immunother 66(8):969–977. (PMID: 2821492810.1007/s00262-017-1958-2)
Tanyi JL, Chu CS (2012) Dendritic cell-based tumor vaccinations in epithelial ovarian cancer: a systematic review. Immunotherapy 4(10):995–1009. (PMID: 2314875210.2217/imt.12.100)
Wertel I, Polak G, Tarkowski R, Kotarska M (2011) Evaluation of IL-10 and TGF-beta levels and myeloid and lymphoid dendritic cells in ovarian cancer patients. Ginekol Pol 82(6):414–420. (PMID: 21853929)
Liu WH, Liu JJ, Wu J et al (2013) Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PLoS One 8(1):e55487. (PMID: 23383203355954810.1371/journal.pone.0055487)
Posselt G, Schwarz H, Duschl A, Horejs-Hoeck J (2011) Suppressor of cytokine signaling 2 is a feedback inhibitor of TLR-induced activation in human monocyte-derived dendritic cells. J Immunol 187(6):2875–2884. (PMID: 2184438910.4049/jimmunol.1003348)
Conzelmann M, Wagner AH, Hildebrandt A et al (2010) IFN-gamma activated JAK1 shifts CD40-induced cytokine profiles in human antigen-presenting cells toward high IL-12p70 and low IL-10 production. Biochem Pharmacol 80(12):2074–2086. (PMID: 2070902710.1016/j.bcp.2010.07.040)
Sipak-Szmigiel O, Wlodarski P, Ronin-Walknowska E et al (2017) Serum and peritoneal fluid concentrations of soluble human leukocyte antigen, tumor necrosis factor alpha and interleukin 10 in patients with selected ovarian pathologies. J Ovarian Res 10(1):25. (PMID: 28376925538114010.1186/s13048-017-0320-9)
Liu CZ, Zhang L, Chang XH et al (2012) Overexpression and immunosuppressive functions of transforming growth factor 1, vascular endothelial growth factor and interleukin-10 in epithelial ovarian cancer. Chin J Cancer Res 24(2):130–137. (PMID: 23359769355526310.1007/s11670-012-0130-y)
Zhang S-N, Choi I-K, Huang J-H, Yoo J-Y, Choi K-J, Yun C-O (2011) Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther 19(8):1558–1568. (PMID: 21468000314917110.1038/mt.2011.29)
Wallet MA, Sen P, Tisch R (2005) Immunoregulation of dendritic cells. Clin Med Res 3(3):166–175. (PMID: 16160071123715810.3121/cmr.3.3.166)
Maccalli C, Parmiani G, Ferrone S (2017) Immunomodulating and immunoresistance properties of cancer-initiating cells: implications for the clinical success of immunotherapy. Immunol Investig 46(3):221–238. (PMID: 10.1080/08820139.2017.1280051)
Batchu RB, Gruzdyn OV, Qazi AM et al (2016) Pancreatic cancer cell lysis by cell-penetrating peptide-MAGE-A3-induced cytotoxic T lymphocytes. JAMA Surg 151(11):1086–1088. (PMID: 2785186210.1001/jamasurg.2016.2346)
Batchu RB, Gruzdyn OV, Qazi A, Mahmud EM, Weaver DW, Gruber SA (2016) Pancreatic cancer-induced microenvironment inhibits dendritic cell activation via decreased nuclear localization of NF-kB. 73rd central surgical association, Montreal, Quebec, 10–12 Mar 2016.
Batchu RB, Qazi A, Gruzdyn OV et al (2015) Inhibition of epithelial ovarian cancer (EOC)-induced microenvironment can restore dendritic cell (DC) activation and migration. J Am Coll Surg 221(4):e33. (PMID: 10.1016/j.jamcollsurg.2015.08.384)
Batchu RB, Qazi A, Gruzdyn OV et al IL-10 and TGF-b blockade reverses the inhibitory effects of pancreatic carcinoma on dendritic cell activation and migration. Paper presented at: 39th association of VA surgeons, Miami Beach, FL, 2–5 May 2015.
Batchu RB, Gruzdyn OV, Moreno-Bost AM et al (2014) Efficient lysis of epithelial ovarian cancer cells by MAGE-A3-induced cytotoxic T lymphocytes using rAAV-6 capsid mutant vector. Vaccine 32(8):938–943. (PMID: 2440639010.1016/j.vaccine.2013.12.049)
Batchu RB, Gruzdyn OV, Kung ST, Gruber SA, Weaver DW (2014) Dendritic cell based immunotherapy of cancer with cell penetrating domains. Indian J Surg Oncol 5(1):3–4. (PMID: 2466915810.1007/s13193-013-0277-0)
Batchu RB, Gruzdyn O, Potti RB, Weaver DW, Gruber SA (2014) MAGE-A3 with cell-penetrating domain as an efficient therapeutic cancer vaccine. JAMA Surg 149(5):451–457. (PMID: 2467142610.1001/jamasurg.2013.4113)
Batchu RB, Gruzdyn OV, Kolli BK et al (2020) Inhibition of IL-10 in the tumor microenvironment potentiates mesothelin-chimeric antigen receptor NK-92MI-mediated killing of ovarian cancer cells. J Am Coll Surg.
Batchu RB, Gruzdyn OV, Tavva PS et al (2019) Engraftment of mesothelin chimeric antigen receptor using a hybrid sleeping beauty/minicircle vector into NK-92MI cells for treatment of pancreatic cancer. Surgery 166(4):503–508. (PMID: 3141660410.1016/j.surg.2019.05.047)
Batchu RB, Gruzdyn OV, Rohondia S et al (2018) Inhibition of IL-10 augments mesothelin chimeric antigen receptor T cell activity in epithelial ovarian cancer. J Am Coll Surg 227(4):e215–e216. (PMID: 10.1016/j.jamcollsurg.2018.08.583)
Batchu RB, Gruzdyn OV, Mahmud EM et al (2018) Inhibition of Interleukin-10 in the tumor microenvironment can restore mesothelin chimeric antigen receptor T cell activity in pancreatic cancer in vitro. Surgery 163(3):627–632. (PMID: 2933681410.1016/j.surg.2017.10.056)
Gruzdyn O, Batchu RB, Mahmud EM et al (2017) Mesothelin chimeric antigen receptor (CAR)-mediated therapy for ovarian cancer. J Am Coll Surg 225(4):e47. (PMID: 10.1016/j.jamcollsurg.2017.07.645)
Carr TM, Adair SJ, Fink MJ, Hogan KT (2008) Immunological profiling of a panel of human ovarian cancer cell lines. Cancer Immunol Immunother 57(1):31–42. (PMID: 1757985810.1007/s00262-007-0347-7)
Zhang S, Zhou X, Yu H, Yu Y (2010) Expression of tumor-specific antigen MAGE, GAGE and BAGE in ovarian cancer tissues and cell lines. BMC Cancer 10:163. (PMID: 20423514286881110.1186/1471-2407-10-163)
Coolen AL, Lacroix C, Mercier-Gouy P et al (2019) Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials 195:23–37. (PMID: 3061099110.1016/j.biomaterials.2018.12.019)
Lim S, Koo JH, Choi JM (2016) Use of cell-penetrating peptides in dendritic cell-based vaccination. Immune Netw 16(1):33–43. (PMID: 26937230477009810.4110/in.2016.16.1.33)
Chauhan A, Tikoo A, Kapur AK, Singh M (2007) The taming of the cell penetrating domain of the HIV tat: myths and realities. J Control Release 117(2):148–162. (PMID: 1719628910.1016/j.jconrel.2006.10.031)
Batchu RB, Moreno AM, Szmania SM et al (2005) Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma. Cancer Res 65(21):10041–10049. (PMID: 1626703010.1158/0008-5472.CAN-05-1383)
Brichard VG, Lejeune D (2007) GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to phase III clinical development. Vaccine 25(Suppl 2):B61–B71. (PMID: 1791646310.1016/j.vaccine.2007.06.038)
Schultz ES, Lethe B, Cambiaso CL et al (2000) A MAGE-A3 peptide presented by HLA-DP4 is recognized on tumor cells by CD4+ cytolytic T lymphocytes. Cancer Res 60(22):6272–6275. (PMID: 11103782)
Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4):583–593. (PMID: 2570152257015210.1128/CMR.00008-08)
Ponnazhagan S, Mahendra G, Curiel DT, Shaw DR (2001) Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. J Virol 75(19):9493–9501. (PMID: 1153321111451610.1128/JVI.75.19.9493-9501.2001)
Korokhov N, de Gruijl TD, Aldrich WA et al (2005) High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biol Ther 4(3):289–294. (PMID: 1575365410.4161/cbt.4.3.1499)
Ussher JE, Taylor JA (2010) Optimized transduction of human monocyte-derived dendritic cells by recombinant adeno-associated virus serotype 6. Hum Gene Ther 21(12):1675–1686. (PMID: 2057884710.1089/hum.2010.087)
Vazquez J, Chavarria M, Lopez GE et al (2020) Identification of unique clusters of T, dendritic and innate lymphoid cells in the peritoneal fluid of ovarian cancer patients. Am J Reprod Immunol 84(3):e13284.
Brencicova E, Jagger AL, Evans HG et al (2017) Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on toll-like receptor-mediated dendritic cell activation in ovarian carcinoma. PLoS One 12(4):e0175712. (PMID: 28410380539195110.1371/journal.pone.0175712)
Goyne HE, Stone PJ, Burnett AF, Cannon MJ (2014) Ovarian tumor ascites CD14+ cells suppress dendritic cell-activated CD4+ T-cell responses through IL-10 secretion and indole amine 2,3-dioxygenase. J Immunother 37(3):163–169. (PMID: 24598451395453910.1097/CJI.0000000000000030)
Scholz C, Rampf E, Toth B et al (2009) Ovarian cancer-derived glycodelin impairs in vitro dendritic cell maturation. J Immunother 32(5):492–497. (PMID: 1960924110.1097/CJI.0b013e3181a59fa9)
Zavadova E, Savary CA, Templin S, Verschraegen CF, Freedman RS (2001) Maturation of dendritic cells from ovarian cancer patients. Cancer Chemother Pharmacol 48(4):289–296. (PMID: 1171062910.1007/s002800100331)
Melichar B, Touskova M, Tosner J, Kopecky O (2001) The phenotype of ascitic fluid lymphocytes in patients with ovarian carcinoma and other primaries. Onkologie 24(2):156–160. (PMID: 11441296)
Wang Y, Yi J, Chen X, Zhang Y, Xu M, Yang Z (2016) The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-beta and IL-10. Oncol Lett 11(2):1527–1530. (PMID: 2689377410.3892/ol.2015.4044)
Huang X, Zou Y, Lian L et al (2013) Changes of T cells and cytokines TGF-beta1 and IL-10 in mice during liver metastasis of colon carcinoma: implications for liver anti-tumor immunity. J Gastrointest Surg 17(7):1283–1291. (PMID: 2367051710.1007/s11605-013-2194-5)
Spinardi-Barbisan AL, Barbisan LF, de Camargo JL, Rodrigues MA (2004) Infiltrating CD8+ T lymphocytes, natural killer cells, and expression of IL-10 and TGF-beta1 in chemically induced neoplasms in male Wistar rats. Toxicol Pathol 32(5):548–557. (PMID: 1560353910.1080/01926230490505059)
Hirao M, Onai N, Hiroishi K et al (2000) CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res 60(8):2209–2217. (PMID: 10786686)
Montfort A, Pearce O, Maniati E et al (2017) A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin Cancer Res 23(1):250–262. (PMID: 2735447010.1158/1078-0432.CCR-16-0081)
Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116. (PMID: 1836399610.1111/j.1600-065X.2008.00614.x)
Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19(1):683–765. (PMID: 1124405110.1146/annurev.immunol.19.1.683)
Boks MA, Kager-Groenland JR, Haasjes MS, Zwaginga JJ, van Ham SM, ten Brinke A (2012) IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction—a comparative study of human clinical-applicable DC. Clin Immunol 142(3):332–342. (PMID: 2222583510.1016/j.clim.2011.11.011)
Kobie JJ, Wu RS, Kurt RA et al (2003) Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63(8):1860–1864. (PMID: 12702574)
Liou JT, Mao CC, Ching-Wah Sum D et al (2013) Peritoneal administration of Met-RANTES attenuates inflammatory and nociceptive responses in a murine neuropathic pain model. J Pain 14(1):24–35. (PMID: 2318300310.1016/j.jpain.2012.09.015)
Prazeres PHDM, Leonel C, Walison NS et al (2020) Ablation of sensory nerves favours melanoma progression. J Cell Mol Med 24(17):9574–9589.
Turnquist HR, Lin X, Ashour AE et al (2007) CCL21 induces extensive intratumoral immune cell infiltration and specific anti-tumor cellular immunity. Int J Oncol 30(3):631–639. (PMID: 17273764)
Thepmalee C, Panya A, Junking M, Chieochansin T, Yenchitsomanus PT (2018) Inhibition of IL-10 and TGF-beta receptors on dendritic cells enhances activation of effector T-cells to kill cholangiocarcinoma cells. Hum Vaccin Immunother 14(6):1423–1431. (PMID: 29420117603746810.1080/21645515.2018.1431598)
Gordy JT, Luo K, Francica B, Drake C, Markham RB (2018) Anti-IL-10-mediated enhancement of antitumor efficacy of a dendritic cell-targeting MIP3α-gp100 vaccine in the B16F10 mouse melanoma model is dependent on type I interferons. J Immunother 41(4):181–189. (PMID: 29334492589138210.1097/CJI.0000000000000212)
Yang L, Dong Y, Li Y et al (2019) IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer. Int J Cancer 145(4):1099–1110. (PMID: 3067192710.1002/ijc.32151)
Harrington BS, Annunziata CM (2019) NF-kappaB signaling in ovarian cancer. Cancers (Basel) 11(8):1182.
Ignacio RM, Kabir SM, Lee ES, Adunyah SE, Son DS (2016) NF-kappaB-mediated CCL20 reigns dominantly in CXCR2-driven ovarian Cancer progression. PLoS One 11(10):e0164189. (PMID: 27723802505673510.1371/journal.pone.0164189)
Yang N, Huang J, Greshock J et al (2008) Transcriptional regulation of PIK3CA oncogene by NF-kappaB in ovarian cancer microenvironment. PLoS One 3(3):e1758. (PMID: 18335034225814510.1371/journal.pone.0001758)
فهرسة مساهمة: Keywords: CD4+ T cells; CD8+ cytotoxic T cells; Cancer stem cells; Chemokines; Chimeric antigen receptor T cells; Cytokines; Dendritic cells; Epithelial-to-mesenchymal transition; Immunosurveillance; Immunotherapy; Interferon-γ; Interleukin-10; Interleukin-12; Interleukins; Janus kinase-signal transducer and activator of transcription 3 pathway; Mesothelin; Nuclear factor-κB; Ovarian cancer; Regulatory T cells; Transforming growth factor -β; Tumor microenvironment
المشرفين على المادة: 0 (IL10 protein, human)
130068-27-8 (Interleukin-10)
تواريخ الأحداث: Date Created: 20210209 Date Completed: 20210215 Latest Revision: 20220531
رمز التحديث: 20231215
DOI: 10.1007/978-3-030-55617-4_3
PMID: 33559854
قاعدة البيانات: MEDLINE
الوصف
تدمد:0065-2598
DOI:10.1007/978-3-030-55617-4_3