دورية أكاديمية

Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes.

التفاصيل البيبلوغرافية
العنوان: Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes.
المؤلفون: Temba GS; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, (KCMUCo), Moshi, Tanzania.; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands., Kullaya V; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, (KCMUCo), Moshi, Tanzania.; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania., Pecht T; Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany., Mmbaga BT; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania., Aschenbrenner AC; Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany., Ulas T; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany., Kibiki G; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania.; East African Health and Research Commission (EAHRC), Bujumbura, Burundi., Lyamuya F; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania., Boahen CK; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands., Kumar V; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.; Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands., Joosten LAB; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands., Schultze JL; Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany., van der Ven AJ; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands., Netea MG; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands. Mihai.Netea@radboudumc.nl.; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands. Mihai.Netea@radboudumc.nl.; Department for Immunology and Metabolism, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany. Mihai.Netea@radboudumc.nl., de Mast Q; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands. Quirijn.deMast@radboudumc.nl.; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands. Quirijn.deMast@radboudumc.nl.
المصدر: Nature immunology [Nat Immunol] 2021 Mar; Vol. 22 (3), pp. 287-300. Date of Electronic Publication: 2021 Feb 11.
نوع المنشور: Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature America Inc. c2000-
مواضيع طبية MeSH: Diet, Healthy* , Energy Metabolism*/genetics , Immunity, Innate*/genetics , Rural Health* , Urban Health*, Cytokines/*blood , Inflammation Mediators/*blood, Adolescent ; Adult ; Aged ; Aged, 80 and over ; Biomarkers/blood ; Cytokines/genetics ; Female ; Humans ; Male ; Metabolome ; Middle Aged ; Nutritional Status ; Nutritive Value ; Risk Reduction Behavior ; Seasons ; Tanzania ; Transcriptome ; Tumor Necrosis Factor-alpha/blood ; Urbanization ; Young Adult
مستخلص: Sub-Saharan Africa currently experiences an unprecedented wave of urbanization, which has important consequences for health and disease patterns. This study aimed to investigate and integrate the immune and metabolic consequences of rural or urban lifestyles and the role of nutritional changes associated with urban living. In a cohort of 323 healthy Tanzanians, urban as compared to rural living was associated with a pro-inflammatory immune phenotype, both at the transcript and protein levels. We identified different food-derived and endogenous circulating metabolites accounting for these differences. Serum from urban dwellers induced reprogramming of innate immune cells with higher tumor necrosis factor production upon microbial re-stimulation in an in vitro model of trained immunity. These data demonstrate important shifts toward an inflammatory phenotype associated with an urban lifestyle and provide new insights into the underlying dietary and metabolic factors, which may affect disease epidemiology in sub-Sahara African countries.
التعليقات: Comment in: Nat Immunol. 2021 Mar;22(3):266-268. (PMID: 33574618)
References: De Brauw, A., Mueller, V. & Lee, H. L. The role of rural–urban migration in the structural transformation of sub-Saharan Africa. World Dev. 63, 33–42 (2014).
Beaglehole, R. et al. Priority actions for the non-communicable disease crisis. Lancet 377, 1438–1447 (2011). (PMID: 21474174)
Unwin, N. et al. Rural to urban migration and changes in cardiovascular risk factors in Tanzania: a prospective cohort study. BMC Public Health 10, 272 (2010). (PMID: 204975672892446)
Popkin, B. M. The nutrition transition: an overview of world patterns of change. Nutr. Rev. 62, S140–S143 (2004). (PMID: 15387480)
Abrahams, Z., McHiza, Z. & Steyn, N. P. Diet and mortality rates in sub-Saharan Africa: stages in the nutrition transition. BMC Public Health 11, 801 (2011). (PMID: 219956183209469)
Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and ‘western-lifestyle’ inflammatory diseases. Immunity 40, 833–842 (2014). (PMID: 24950203)
Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018). (PMID: 293289116324559)
Bickler, S. W. et al. Urbanization in sub-Saharan Africa: declining rates of chronic and recurrent infection and their possible role in the origins of non-communicable diseases. World J. Surg. 42, 1617–1628 (2018). (PMID: 292348495935558)
Kodaman, N. et al. Cardiovascular disease risk factors in Ghana during the rural-to-urban transition: a cross-sectional study. PLoS ONE 11, e0162753 (2016). (PMID: 277326015061429)
Kann, P. H. et al. Alterations of cortisol homeostasis may link changes of the sociocultural environment to an increased diabetes and metabolic risk in developing countries: a prospective diagnostic study performed in cooperation with the Ovahimba people of the Kunene region/northwestern. J. Clin. Endocr. Metab. 100, E482–E486 (2015). (PMID: 25522263)
Mbow, M. et al. Changes in immunological profile as a function of urbanization and lifestyle. Immunology 143, 569–577 (2014). (PMID: 249249584253505)
Gruebner, O. et al. Cities and mental health. Dtsch Arztebl. Int. 114, 121–127 (2017). (PMID: 283022615374256)
Misra, A. & Ganda, O. P. Migration and its impact on adiposity and type 2 diabetes. Nutrition 23, 696–708 (2007). (PMID: 17679049)
Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016). (PMID: 278145085787854)
Piasecka, B. et al. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proc. Natl Acad. Sci. USA 115, E488–E497 (2018). (PMID: 29282317)
Baylis, D., Bartlett, D. B., Patel, H. P. & Roberts, H. C. Understanding how we age: insights into inflammaging. Longev. Healthspan 2, 8 (2013). (PMID: 244720983922951)
Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011). (PMID: 21830798)
Hostetler, G. L., Ralston, R. A. & Schwartz, S. J. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 8, 423–435 (2017). (PMID: 285070085421117)
Ratter, J. M., Tack, C. J., Netea, M. G. & Stienstra, R. Environmental signals influencing myeloid cell metabolism and function in diabetes. Trends Endocrinol. Metab. 29, 468–480 (2018). (PMID: 29789206)
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009). (PMID: 198471662783335)
Lee, J. H. et al. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharm. Res. 30, 1318–1327 (2007). (PMID: 18038911)
Ren, K., Jiang, T., Zhou, H. F., Liang, Y. & Zhao, G. J. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation. Cell. Physiol. Biochem. 47, 2170–2184 (2018). (PMID: 29975943)
Wang, J. et al. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 37, 2085–2090 (2014). (PMID: 24958013)
Marton, A. et al. Anti-inflammatory effects of inosine in human monocytes, neutrophils and epithelial cells in vitro. Int. J. Mol. Med. 8, 617–621 (2001). (PMID: 11712075)
Wang, Q. et al. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiol. Dis. 36, 223–231 (2009). (PMID: 196355622742567)
Constantin, G., Laudanna, C., Baron, P. & Berton, G. Sulfatides trigger cytokine gene expression and secretion in human monocytes. FEBS Lett. 350, 66–70 (1994). (PMID: 8062926)
Horii, Y. et al. Leukotriene B4 receptor 1 exacerbates inflammation following myocardial infarction. FASEB J. 34, 8749–8763 (2020). (PMID: 32385915)
Basu, S. Bioactive eicosanoids: role of prostaglandin F and F 2 -isoprostanes in inflammation and oxidative stress related pathology. Mol. Cells 30, 383–391 (2010). (PMID: 21113821)
Branco, A., Yoshikawa, F. S. Y., Pietrobon, A. J. & Sato, M. N. Role of histamine in modulating the immune response and inflammation. Mediators Inflamm. 2018, 9524075 (2018). (PMID: 302249006129797)
Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011). (PMID: 21575907)
Li, Y. et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat. Med. 22, 952–960 (2016); erratum 22, 1192 (2016).
Bekkering, S. et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 34, 1731–1738 (2014). (PMID: 24903093)
Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8, 559–568 (2008). (PMID: 185754612522268)
Minton, K. Viperin breaks viral chains. Nat. Rev. Immunol. 18, 480–481 (2018). (PMID: 29950609)
Napier, B. A. et al. Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proc. Natl Acad. Sci. USA 116, 3688–3694 (2019). (PMID: 308087566397595)
Strandberg, L. et al. Mice chronically fed high-fat diet have increased mortality and disturbed immune response in sepsis. PLoS ONE https://doi.org/10.1371/journal.pone.0007605 (2009).
Christ, A., Lauterbach, M. & Latz, E. Western diet and the immune system: an inflammatory connection. Immunity 51, 794–811 (2019). (PMID: 31747581)
Leentjens, J. et al. Trained innate immunity as a novel mechanism linking infection and the development of atherosclerosis. Circ. Res. 122, 664–669 (2018). (PMID: 29367213)
García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M. A. & Martínez, J. A. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58, 537–552 (2009). (PMID: 19381780)
Zhang, X., Wang, G., Gurley, E. C. & Zhou, H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS ONE 9, e107072 (2014). (PMID: 251923914156420)
Hemler, E. C. & Hu, F. B. Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Curr. Atheroscler. Rep. 21, 18 (2019). (PMID: 30895476)
Minutoli, L. et al. The disaccharide trehalose inhibits proinflammatory phenotype activation in macrophages and prevents mortality in experimental septic shock. Shock 27, 91–96 (2007). (PMID: 17172986)
Collins, J. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291–294 (2018). (PMID: 293101225984069)
Choy, K. W., Murugan, D. D., Leong, X.-F., Abas, R. & Alias, A. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signalling in cardiovascular diseases: a mini review. Front. Pharmacol. 10, 1295 (2019). (PMID: 317497036842955)
Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015). (PMID: 25965853)
Oosting, M. et al. Functional and genomic architecture of Borrelia burgdorferi-induced cytokine responses in humans. Cell Host Microbe 20, 822–833 (2016). (PMID: 27818078)
Koeken, V. A. et al. BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner. J. Clin. Invest. https://doi.org/10.1172/JCI133935 (2020). (PMID: 10.1172/JCI133935326927327641012)
Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016). (PMID: 27546235)
Onyango, E. M. & Onyango, B. M. The rise of noncommunicable diseases in Kenya: an examination of the time trends and contribution of the changes in diet and physical inactivity. J. Epidemiol. Glob. Health 8, 1–7 (2018). (PMID: 308597807325816)
Tibshirani, R. Estimating transformations for regression via additivity and variance stabilization. J. Am. Stat. Assoc. 83, 394–405 (1988).
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Nat. Preced. https://doi.org/10.1038/npre.2010.4282.2 (2010).
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012). (PMID: 222576693307112)
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 256057924402510)
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012). (PMID: 224554633339379)
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 161995171239896)
Arango, D. et al. Apigenin induces DNA damage through the PKC δ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair. Biochem. Pharmacol. 84, 1571–1580 (2012). (PMID: 229856214097023)
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013). (PMID: 233238313618321)
Chong, J., Wishart, D. S. & Xia, J. Using Metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68, e86 (2019). (PMID: 31756036)
Repnik, U., Knezevic, M. & Jeras, M. Simple and cost-effective isolation of monocytes from buffy coats. J. Immunol. Methods 278, 283–292 (2003). (PMID: 12957415)
Bekkering, S. et al. In vitro experimental model of trained innate immunity in human primary monocytes. Clin. Vaccine Immunol. 23, 926–933 (2016). (PMID: 277334225139603)
Shah, T. S. et al. optiCall: a robust genotype-calling algorithm for rare, low-frequency and common variants. Bioinformatics 28, 1598–1603 (2012). (PMID: 225000013371828)
Deelen, P. et al. Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC Res. Notes 7, 901 (2014). (PMID: 254952134307387)
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016). (PMID: 275712635157836)
Haug, K. et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 48, D440–D444 (2020). (PMID: 31691833)
المشرفين على المادة: 0 (Biomarkers)
0 (Cytokines)
0 (Inflammation Mediators)
0 (TNF protein, human)
0 (Tumor Necrosis Factor-alpha)
تواريخ الأحداث: Date Created: 20210212 Date Completed: 20210426 Latest Revision: 20230126
رمز التحديث: 20240829
DOI: 10.1038/s41590-021-00867-8
PMID: 33574617
قاعدة البيانات: MEDLINE
الوصف
تدمد:1529-2916
DOI:10.1038/s41590-021-00867-8