دورية أكاديمية

Cholesterol as a modulator of cannabinoid receptor CB 2 signaling.

التفاصيل البيبلوغرافية
العنوان: Cholesterol as a modulator of cannabinoid receptor CB 2 signaling.
المؤلفون: Yeliseev A; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA. yeliseeva@mail.nih.gov., Iyer MR; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA. malliga.iyer@nih.gov., Joseph TT; Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA., Coffey NJ; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA., Cinar R; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA., Zoubak L; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA., Kunos G; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA., Gawrisch K; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA.
المصدر: Scientific reports [Sci Rep] 2021 Feb 12; Vol. 11 (1), pp. 3706. Date of Electronic Publication: 2021 Feb 12.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Cholesterol/*metabolism , Receptor, Cannabinoid, CB2/*metabolism, Escherichia coli ; HEK293 Cells ; Humans ; Molecular Dynamics Simulation ; Receptor, Cannabinoid, CB2/isolation & purification
مستخلص: Signaling through integral membrane G protein-coupled receptors (GPCRs) is influenced by lipid composition of cell membranes. By using novel high affinity ligands of human cannabinoid receptor CB 2 , we demonstrate that cholesterol increases basal activation levels of the receptor and alters the pharmacological categorization of these ligands. Our results revealed that (2-(6-chloro-2-((2,2,3,3-tetramethylcyclopropane-1-carbonyl)imino)benzo[d]thiazol-3(2H)-yl)ethyl acetate ligand (MRI-2646) acts as a partial agonist of CB 2 in membranes devoid of cholesterol and as a neutral antagonist or a partial inverse agonist in cholesterol-containing membranes. The differential effects of a specific ligand on activation of CB 2 in different types of membranes may have implications for screening of drug candidates in a search of modulators of GPCR activity. MD simulation suggests that cholesterol exerts an allosteric effect on the intracellular regions of the receptor that interact with the G-protein complex thereby altering the recruitment of G protein.
References: Jastrzebska, B., Debinski, A., Filipek, S. & Palczewski, K. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Prog. Lipid Res. 50, 267–277. https://doi.org/10.1016/j.plipres.2011.03.002 (2011). (PMID: 10.1016/j.plipres.2011.03.002214353543114187)
Marino, K. A., Prada-Gracia, D., Provasi, D. & Filizola, M. Impact of lipid composition and receptor conformation on the spatio-temporal organization of mu-opioid receptors in a multi-component plasma membrane model. PLoS Comput. Biol. 12, e1005240. https://doi.org/10.1371/journal.pcbi.1005240 (2016). (PMID: 10.1371/journal.pcbi.1005240279599245154498)
Salas-Estrada, L. A., Leioatts, N., Romo, T. D. & Grossfield, A. Lipids alter rhodopsin function via ligand-like and solvent-like interactions. Biophys. J. 114, 355–367. https://doi.org/10.1016/j.bpj.2017.11.021 (2018). (PMID: 10.1016/j.bpj.2017.11.021294014335984976)
Escriba, P. V. et al. Role of lipid polymorphism in G protein-membrane interactions: Nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc. Natl. Acad. Sci. U.S.A. 94, 11375–11380. https://doi.org/10.1073/pnas.94.21.11375 (1997). (PMID: 10.1073/pnas.94.21.11375932661723471)
Maxfield, F. R. & van Meer, G. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell. Biol. 22, 422–429. https://doi.org/10.1016/j.ceb.2010.05.004 (2010). (PMID: 10.1016/j.ceb.2010.05.004206276782910236)
Chini, B. & Parenti, M. G-protein-coupled receptors, cholesterol and palmitoylation: Facts about fats. J. Mol. Endocrinol. 42, 371–379. https://doi.org/10.1677/JME-08-0114 (2009). (PMID: 10.1677/JME-08-011419131499)
Manna, M. et al. Mechanism of allosteric regulation of beta2-adrenergic receptor by cholesterol. Elife https://doi.org/10.7554/eLife.18432 (2016). (PMID: 10.7554/eLife.18432278979725182060)
Guixa-Gonzalez, R. et al. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun. 8, 14505. https://doi.org/10.1038/ncomms14505 (2017). (PMID: 10.1038/ncomms14505282209005321766)
Hefti, F. F. Requirements for a lead compound to become a clinical candidate. BMC Neurosci. 9, S7. https://doi.org/10.1186/1471-2202-9-S3-S7 (2008). (PMID: 10.1186/1471-2202-9-S3-S7190910042604885)
Dawaliby, R. et al. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 291, 3658–3667. https://doi.org/10.1074/jbc.M115.706523 (2016). (PMID: 10.1074/jbc.M115.70652326663081)
Marheineke, K., Grunewald, S., Christie, W. & Reilander, H. Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett. 441, 49–52 (1998). (PMID: 10.1016/S0014-5793(98)01523-3)
Warnock, D. E. et al. Determination of plasma membrane lipid mass and composition in cultured Chinese hamster ovary cells using high gradient magnetic affinity chromatography. J. Biol. Chem. 268, 10145–10153 (1993). (PMID: 10.1016/S0021-9258(18)82184-6)
Oursel, D. et al. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun. Mass Spectrom. 21, 1721–1728. https://doi.org/10.1002/rcm.3013 (2007). (PMID: 10.1002/rcm.301317477452)
Morein, S., Andersson, A. S., Rilfors, L. & Lindblom, G. Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structures. J. Biol. Chem. 271, 6801–6809. https://doi.org/10.1074/jbc.271.12.6801 (1996). (PMID: 10.1074/jbc.271.12.68018636103)
Vauquelin, G. Cell membranes and how long drugs may exert beneficial pharmacological activity in vivo. Br. J. Clin. Pharmacol. 82, 673–682. https://doi.org/10.1111/bcp.12996 (2016). (PMID: 10.1111/bcp.12996271351955338106)
Jacobson, K. A. New paradigms in GPCR drug discovery. Biochem. Pharmacol. 98, 541–555. https://doi.org/10.1016/j.bcp.2015.08.085 (2015). (PMID: 10.1016/j.bcp.2015.08.085262651384967540)
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there?. Nat. Rev. Drug Discov. 5, 993–996. https://doi.org/10.1038/nrd2199 (2006). (PMID: 10.1038/nrd219917139284)
Yin, H. & Flynn, A. D. Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76. https://doi.org/10.1146/annurev-bioeng-092115-025322 (2016). (PMID: 10.1146/annurev-bioeng-092115-025322268639234968933)
Talmont, F., Lebrun, C. & Zajac, J. M. Agonist binding of human mu opioid receptors expressed in the yeast Pichia pastoris: Effect of cholesterol complementation. Neurochem. Int. 132, 104588. https://doi.org/10.1016/j.neuint.2019.104588 (2020). (PMID: 10.1016/j.neuint.2019.10458831704091)
Veatch, S. L., Soubias, O., Keller, S. L. & Gawrisch, K. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl. Acad. Sci. U.S.A. 104, 17650–17655. https://doi.org/10.1073/pnas.0703513104 (2007). (PMID: 10.1073/pnas.0703513104179624172077022)
Chen, Z. & Rand, R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys. J. 73, 267–276. https://doi.org/10.1016/S0006-3495(97)78067-6 (1997). (PMID: 10.1016/S0006-3495(97)78067-691997911180928)
Pan, J., Tristram-Nagle, S. & Nagle, J. F. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 80, 021931. https://doi.org/10.1103/PhysRevE.80.021931 (2009). (PMID: 10.1103/PhysRevE.80.021931197921752756665)
Rouviere, E., Arnarez, C., Yang, L. & Lyman, E. Identification of two new cholesterol interaction sites on the A2A adenosine receptor. Biophys. J. 113, 2415–2424. https://doi.org/10.1016/j.bpj.2017.09.027 (2017). (PMID: 10.1016/j.bpj.2017.09.027292119955738547)
Gimpl, G. Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids 199, 61–73. https://doi.org/10.1016/j.chemphyslip.2016.04.006 (2016). (PMID: 10.1016/j.chemphyslip.2016.04.00627108066)
Sengupta, D., Prasanna, X., Mohole, M. & Chattopadhyay, A. Exploring GPCR-lipid interactions by molecular dynamics simulations: Excitements, challenges, and the way forward. J. Phys. Chem. B 122, 5727–5737. https://doi.org/10.1021/acs.jpcb.8b01657 (2018). (PMID: 10.1021/acs.jpcb.8b0165729685028)
Legler, D. F. et al. Modulation of chemokine receptor function by cholesterol: New prospects for pharmacological intervention. Mol. Pharmacol. 91, 331–338. https://doi.org/10.1124/mol.116.107151 (2017). (PMID: 10.1124/mol.116.10715128082305)
Bari, M., Paradisi, A., Pasquariello, N. & Maccarrone, M. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J. Neurosci. Res. 81, 275–283. https://doi.org/10.1002/jnr.20546 (2005). (PMID: 10.1002/jnr.2054615920744)
Oddi, S. et al. Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem. 116, 858–865. https://doi.org/10.1111/j.1471-4159.2010.07041.x (2011). (PMID: 10.1111/j.1471-4159.2010.07041.x21214565)
Bari, M. et al. Effect of lipid rafts on Cb2 receptor signaling and 2-arachidonoyl-glycerol metabolism in human immune cells. J. Immunol. 177, 4971–4980 (2006). (PMID: 10.4049/jimmunol.177.8.4971)
Turcotte, C., Blanchet, M. R., Laviolette, M. & Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 73, 4449–4470. https://doi.org/10.1007/s00018-016-2300-4 (2016). (PMID: 10.1007/s00018-016-2300-4274021215075023)
Li, X. et al. Crystal structure of the human cannabinoid receptor CB2. Cell 176, 459–467. https://doi.org/10.1016/j.cell.2018.12.011 (2019). (PMID: 10.1016/j.cell.2018.12.011306391036713262)
Yao, B. B. et al. Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J. Pharmacol. Exp. Ther. 328, 141–151. https://doi.org/10.1124/jpet.108.145011 (2009). (PMID: 10.1124/jpet.108.14501118931146)
Yeliseev, A. A. Methods for recombinant expression and functional characterization of human cannabinoid receptor Cb2. Comput. Struct. Biotechnol. J. 2, 2. https://doi.org/10.5936/csbj.201303011 (2013). (PMID: 10.5936/csbj.201303011)
Yeliseev, A. A., Wong, K. K., Soubias, O. & Gawrisch, K. Expression of human peripheral cannabinoid receptor for structural studies. Protein Sci. 14, 2638–2653. https://doi.org/10.1110/ps.051550305 (2005). (PMID: 10.1110/ps.051550305161955512253291)
Parathath, S. et al. Changes in plasma membrane properties and phosphatidylcholine subspecies of insect Sf9 cells due to expression of scavenger receptor class B, type I, and CD36. J. Biol. Chem. 279, 41310–41318. https://doi.org/10.1074/jbc.M404952200 (2004). (PMID: 10.1074/jbc.M40495220015280390)
Gimpl, G., Klein, U., Reilander, H. & Fahrenholz, F. Expression of the human oxytocin receptor in baculovirus-infected insect cells: High-affinity binding is induced by a cholesterol-cyclodextrin complex. Biochemistry 34, 13794–13801. https://doi.org/10.1021/bi00042a010 (1995). (PMID: 10.1021/bi00042a0107577972)
Huang, Z. & London, E. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria. Chem. Phys. Lipids 199, 11–16. https://doi.org/10.1016/j.chemphyslip.2016.03.002 (2016). (PMID: 10.1016/j.chemphyslip.2016.03.002269647034972651)
Liu, S. L. et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 13, 268–274. https://doi.org/10.1038/nchembio.2268 (2017). (PMID: 10.1038/nchembio.226828024150)
Mahammad, S. & Parmryd, I. Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol. Biol. 1232, 91–102. https://doi.org/10.1007/978-1-4939-1752-5_8 (2015). (PMID: 10.1007/978-1-4939-1752-5_825331130)
Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768, 1311–1324. https://doi.org/10.1016/j.bbamem.2007.03.026 (2007). (PMID: 10.1016/j.bbamem.2007.03.026174935801948080)
Yeliseev, A., Zoubak, L. & Schmidt, T. G. M. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor. Protein Expr. Purif. 131, 109–118. https://doi.org/10.1016/j.pep.2016.11.006 (2017). (PMID: 10.1016/j.pep.2016.11.00627867058)
Yeliseev, A. et al. Thermostability of a recombinant G protein-coupled receptor expressed at high level in mammalian cell culture. Sci. Rep. 10, 16805. https://doi.org/10.1038/s41598-020-73813-7 (2020). (PMID: 10.1038/s41598-020-73813-7330333687546613)
Vukoti, K., Kimura, T., Macke, L., Gawrisch, K. & Yeliseev, A. Stabilization of functional recombinant cannabinoid receptor CB2 in detergent micelles and lipid bilayers. PLoS ONE 7, e46290. https://doi.org/10.1371/journal.pone.0046290 (2012). (PMID: 10.1371/journal.pone.0046290230562773463599)
Xing, C. et al. Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex. Cell https://doi.org/10.1016/j.cell.2020.01.007 (2020). (PMID: 10.1016/j.cell.2020.01.007322594878247115)
Huang, W. et al. Structural insights into micro-opioid receptor activation. Nature 524, 315–321. https://doi.org/10.1038/nature14886 (2015). (PMID: 10.1038/nature14886262453794639397)
Salari, R., Joseph, T., Lohia, R., Henin, J. & Brannigan, G. A streamlined, general approach for computing ligand binding free energies and its application to GPCR-bound cholesterol. J. Chem. Theory Comput. 14, 6560–6573. https://doi.org/10.1021/acs.jctc.8b00447 (2018). (PMID: 10.1021/acs.jctc.8b00447303583946467757)
Kimura, T. et al. Recombinant cannabinoid type 2 receptor in liposome model activates g protein in response to anionic lipid constituents. J. Biol. Chem. 287, 4076–4087. https://doi.org/10.1074/jbc.M111.268425 (2012). (PMID: 10.1074/jbc.M111.26842522134924)
Mouritsen, O. G. & Zuckermann, M. J. What’s so special about cholesterol?. Lipids 39, 1101–1113. https://doi.org/10.1007/s11745-004-1336-x (2004). (PMID: 10.1007/s11745-004-1336-x15726825)
Niu, S. L., Mitchell, D. C. & Litman, B. J. Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: Effects on receptor activation. J. Biol. Chem. 277, 20139–20145. https://doi.org/10.1074/jbc.M200594200 (2002). (PMID: 10.1074/jbc.M20059420011889130)
Cantor, R. S. The lateral pressure profile in membranes: A physical mechanism of general anesthesia. Biochemistry 36, 2339–2344. https://doi.org/10.1021/bi9627323 (1997). (PMID: 10.1021/bi96273239054538)
Andersen, O. S. & Koeppe, R. E. Bilayer thickness and membrane protein function: An energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130. https://doi.org/10.1146/annurev.biophys.36.040306.132643 (2007). (PMID: 10.1146/annurev.biophys.36.040306.13264317263662)
Yeagle, P. L. Modulation of membrane function by cholesterol. Biochimie 73, 1303–1310. https://doi.org/10.1016/0300-9084(91)90093-g (1991). (PMID: 10.1016/0300-9084(91)90093-g1664240)
Pucadyil, T. J. & Chattopadhyay, A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45, 295–333. https://doi.org/10.1016/j.plipres.2006.02.002 (2006). (PMID: 10.1016/j.plipres.2006.02.00216616960)
Sohlenkamp, C. & Geiger, O. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 40, 133–159. https://doi.org/10.1093/femsre/fuv008 (2016). (PMID: 10.1093/femsre/fuv00825862689)
Hua, T. et al. Crystal structure of the human cannabinoid receptor CB1. Cell 167, 750–762. https://doi.org/10.1016/j.cell.2016.10.004 (2016). (PMID: 10.1016/j.cell.2016.10.004277688945322940)
Krishna Kumar, K. et al. Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176, 448–458. https://doi.org/10.1016/j.cell.2018.11.040 (2019). (PMID: 10.1016/j.cell.2018.11.04030639101)
Reggio, P. H. Endocannabinoid binding to the cannabinoid receptors: What is known and what remains unknown. Curr. Med. Chem. 17, 1468–1486. https://doi.org/10.2174/092986710790980005 (2010). (PMID: 10.2174/092986710790980005201669214120766)
Ehrhart, J. et al. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflam. 2, 29. https://doi.org/10.1186/1742-2094-2-29 (2005). (PMID: 10.1186/1742-2094-2-29)
Kishimoto, S. et al. Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. J. Biochem. 137, 217–223. https://doi.org/10.1093/jb/mvi021 (2005). (PMID: 10.1093/jb/mvi02115749836)
Rudd-Schmidt, J. A. et al. Lipid order and charge protect killer T cells from accidental death. Nat. Commun. 10, 5396. https://doi.org/10.1038/s41467-019-13385-x (2019). (PMID: 10.1038/s41467-019-13385-x317763376881447)
Yeliseev, A. A. & Vukoti, K. in Production of membrane proteins (ed A.S. Robinson) 219–248 (Wiley-VCH, 2011).
Horti, A. G. et al. Synthesis and biodistribution of [11C]A-836339, a new potential radioligand for PET imaging of cannabinoid type 2 receptors (CB2). Bioorg. Med. Chem. 18, 5202–5207. https://doi.org/10.1016/j.bmc.2010.05.058 (2010). (PMID: 10.1016/j.bmc.2010.05.058205544482903661)
Yeliseev, A. Expression and preparation of a G-protein-coupled cannabinoid receptor CB2 for NMR structural studies. Curr. Protoc. Protein Sci. 96, e83. https://doi.org/10.1002/cpps.83 (2019). (PMID: 10.1002/cpps.83306248646579622)
Cinar, R. et al. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight https://doi.org/10.1172/jci.insight.87336 (2016). (PMID: 10.1172/jci.insight.87336275253124979564)
Iyer, M. R. et al. Structural basis of species-dependent differential affinity of 6-alkoxy-5-aryl-3-pyridinecarboxamide cannabinoid-1 receptor antagonists. Mol. Pharmacol. 88, 238–244 (2015). (PMID: 10.1124/mol.115.098541)
Beckner, R. L., Zoubak, L., Hines, K. G., Gawrisch, K. & Yeliseev, A. A. Probing thermostability of detergent-solubilized CB2 receptor by parallel G protein-activation and ligand-binding assays. J. Biol. Chem. 295, 181–190. https://doi.org/10.1074/jbc.RA119.010696 (2020). (PMID: 10.1074/jbc.RA119.01069631776188)
Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145. https://doi.org/10.1002/jcc.23354 (2013). (PMID: 10.1002/jcc.23354238326293800559)
68M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian 09, Revision A02. Gaussian, Inc., (2016).
Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690. https://doi.org/10.1002/jcc.21367 (2010). (PMID: 10.1002/jcc.21367195754672888302)
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370-376. https://doi.org/10.1093/nar/gkr703 (2012). (PMID: 10.1093/nar/gkr70321890895)
Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413. https://doi.org/10.1021/acs.jctc.5b00935 (2016). (PMID: 10.1021/acs.jctc.5b0093526631602)
المشرفين على المادة: 0 (Receptor, Cannabinoid, CB2)
97C5T2UQ7J (Cholesterol)
تواريخ الأحداث: Date Created: 20210213 Date Completed: 20211213 Latest Revision: 20220823
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7881127
DOI: 10.1038/s41598-021-83245-6
PMID: 33580091
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-021-83245-6