دورية أكاديمية

Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera.

التفاصيل البيبلوغرافية
العنوان: Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera.
المؤلفون: Oguntuyo KY; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Stevens CS; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Hung CT; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Ikegame S; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Acklin JA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Kowdle SS; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Carmichael JC; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Chiu HP; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Azarm KD; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Haas GD; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Amanat F; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Klingler J; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.; James J. Peters VA Medical Center, Bronx, New York, USA., Baine I; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Arinsburg S; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Bandres JC; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.; James J. Peters VA Medical Center, Bronx, New York, USA., Siddiquey MNA; Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA., Schilke RM; Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA., Woolard MD; Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA., Zhang H; Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA., Duty AJ; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Kraus TA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Moran TM; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Tortorella D; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Lim JK; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Gamarnik AV; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.; COVIDAR Argentina Consortium, Buenos Aires, Argentina., Hioe CE; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.; James J. Peters VA Medical Center, Bronx, New York, USA., Zolla-Pazner S; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Ivanov SS; Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA., Kamil JP; Department of Microbiology and Immunology, Louisiana State University Health Science Center Shreveport, Shreveport, Louisiana, USA., Krammer F; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA., Lee B; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA Benhur.Lee@mssm.edu.
مؤلفون مشاركون: COVIDAR Argentina Consortium
المصدر: MBio [mBio] 2021 Feb 16; Vol. 12 (1). Date of Electronic Publication: 2021 Feb 16.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 101519231 Publication Model: Electronic Cited Medium: Internet ISSN: 2150-7511 (Electronic) NLM ISO Abbreviation: mBio Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Society for Microbiology
مواضيع طبية MeSH: COVID-19/*diagnosis , COVID-19/*immunology , SARS-CoV-2/*immunology , SARS-CoV-2/*pathogenicity, Antibodies, Neutralizing/immunology ; Antibodies, Neutralizing/metabolism ; Antibodies, Viral/metabolism ; Enzyme-Linked Immunosorbent Assay ; Humans ; Neutralization Tests
مستخلص: The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA ( n  > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC 50 ), absIC 80 , and absIC 90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC 80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week. IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.
(Copyright © 2021 Oguntuyo et al.)
التعليقات: Update of: medRxiv. 2020 Aug 27;:. (PMID: 32817961)
References: Infez Med. 2020 Sep 1;28(3):357-366. (PMID: 32920571)
J Virol. 2011 May;85(9):4122-34. (PMID: 21325420)
J Virol. 2005 Oct;79(19):12231-41. (PMID: 16160149)
Cell Host Microbe. 2020 Jun 10;27(6):891-898.e5. (PMID: 32413276)
Emerg Infect Dis. 2007 Oct;13(10):1562-4. (PMID: 18258008)
Clin Infect Dis. 2020 Nov 19;71(16):2027-2034. (PMID: 32221519)
J Virol. 2004 Jun;78(11):5642-50. (PMID: 15140961)
Science. 2020 Mar 13;367(6483):1260-1263. (PMID: 32075877)
Pathogens. 2020 Mar 23;9(3):. (PMID: 32210130)
J Biol Chem. 2009 Nov 20;284(47):32725-34. (PMID: 19801669)
J Virol. 2014 Jan;88(2):1293-307. (PMID: 24227843)
Science. 2020 Aug 14;369(6505):818-823. (PMID: 32616673)
J Clin Invest. 2003 Jun;111(11):1605-9. (PMID: 12782660)
J Clin Invest. 2020 Sep 1;130(9):4791-4797. (PMID: 32525844)
Antiviral Res. 2020 Jun;178:104792. (PMID: 32272173)
J Virol. 2003 Jan;77(2):1281-91. (PMID: 12502845)
Cell Host Microbe. 2020 Sep 9;28(3):486-496.e6. (PMID: 32738193)
Antiviral Res. 2013 Dec;100(3):605-14. (PMID: 24121034)
J Exp Med. 2020 Nov 2;217(11):. (PMID: 32692348)
Lancet. 2020 Aug 15;396(10249):467-478. (PMID: 32702298)
Nat Commun. 2020 May 4;11(1):2251. (PMID: 32366817)
Virology. 2001 Jan 20;279(2):371-4. (PMID: 11162792)
Nat Med. 2020 Jul;26(7):1033-1036. (PMID: 32398876)
N Engl J Med. 2020 Nov 12;383(20):1920-1931. (PMID: 32663912)
Nat Med. 2020 Aug;26(8):1200-1204. (PMID: 32555424)
Nature. 2005 Jul 21;436(7049):401-5. (PMID: 16007075)
J Med Virol. 2020 Oct;92(10):1755-1756. (PMID: 32270882)
J Virol. 2002 Mar;76(6):2683-91. (PMID: 11861835)
Science. 2020 Aug 7;369(6504):650-655. (PMID: 32571838)
Nature. 2020 Aug;584(7821):450-456. (PMID: 32698192)
Annu Rev Virol. 2016 Sep 29;3(1):237-261. (PMID: 27578435)
Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9. (PMID: 9405687)
Nat Microbiol. 2020 Dec;5(12):1598-1607. (PMID: 33106674)
Euro Surveill. 2020 Apr;25(16):. (PMID: 32347204)
Science. 2020 Aug 7;369(6504):731-736. (PMID: 32540900)
Curr Protoc Microbiol. 2020 Jun;57(1):e100. (PMID: 32302069)
JAMA. 2020 Apr 28;323(16):1582-1589. (PMID: 32219428)
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7001-7003. (PMID: 32165541)
Clin Infect Dis. 2021 Aug 2;73(3):e531-e539. (PMID: 32745196)
J Virol. 2004 Jun;78(12):6134-42. (PMID: 15163706)
Haematologica. 2020 Jul 23;105(12):2834-2840. (PMID: 33256382)
Nature. 2020 May;581(7809):465-469. (PMID: 32235945)
Clin Microbiol Infect. 2020 Sep;26(9):1178-1182. (PMID: 32593741)
J Microbiol Immunol Infect. 2021 Apr;54(2):159-163. (PMID: 32265180)
J Allergy Clin Immunol. 2020 Jul;146(1):35-43. (PMID: 32479758)
Transl Med Commun. 2020;5(1):17. (PMID: 33072871)
J Virol. 2007 May;81(9):4520-32. (PMID: 17301148)
Nat Biotechnol. 2020 Sep;38(9):1073-1078. (PMID: 32704169)
J Gen Virol. 2020 Aug;101(8):791-797. (PMID: 32430094)
J Infect Dis. 2020 Jun 16;222(1):38-43. (PMID: 32348485)
J Pathol. 2004 Jun;203(2):631-7. (PMID: 15141377)
Chest. 2020 Jul;158(1):e9-e13. (PMID: 32243945)
Cancer Res. 2001 Feb 15;61(4):1686-92. (PMID: 11245484)
Science. 2020 Aug 21;369(6506):956-963. (PMID: 32540903)
Cell Host Microbe. 2020 Sep 9;28(3):475-485.e5. (PMID: 32735849)
Nat Microbiol. 2020 Apr;5(4):562-569. (PMID: 32094589)
J Virol. 2010 Dec;84(24):12658-64. (PMID: 20926566)
Nat Commun. 2020 Aug 13;11(1):4059. (PMID: 32792628)
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5. (PMID: 15010527)
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734. (PMID: 32376634)
J Korean Med Sci. 2020 Apr 13;35(14):e149. (PMID: 32281317)
Pharm Stat. 2011 Mar-Apr;10(2):128-34. (PMID: 22328315)
Lancet. 2020 Jun 13;395(10240):1845-1854. (PMID: 32450106)
PLoS Pathog. 2006 Feb;2(2):e7. (PMID: 16477309)
PLoS Pathog. 2016 Mar 30;12(3):e1005520. (PMID: 27028935)
N Engl J Med. 2020 Dec 10;383(24):2320-2332. (PMID: 32877576)
J Med Virol. 2020 May;92(5):512-517. (PMID: 32073157)
J Virol. 2020 Feb 14;94(5):. (PMID: 31801868)
J Virol. 2011 Jan;85(2):873-82. (PMID: 21068237)
MMWR Morb Mortal Wkly Rep. 2003 Dec 12;52(49):1202-6. (PMID: 14668711)
J Med Virol. 2020 Oct;92(10):1890-1901. (PMID: 32293713)
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25057-25067. (PMID: 31767754)
Am J Pathol. 2020 Aug;190(8):1680-1690. (PMID: 32473109)
J Virol. 2020 Oct 14;94(21):. (PMID: 32788194)
J Med Virol. 2020 Oct;92(10):2096-2104. (PMID: 32383254)
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9490-9496. (PMID: 32253318)
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9217-22. (PMID: 15197264)
PLoS One. 2015 Dec 30;10(12):e0146021. (PMID: 26717316)
Emerg Microbes Infect. 2020 Dec;9(1):680-686. (PMID: 32207377)
Retrovirology. 2013 May 24;10:54. (PMID: 23705972)
Lancet. 2020 Apr 4;395(10230):1101-1102. (PMID: 32247384)
J Clin Microbiol. 2020 May 26;58(6):. (PMID: 32229605)
Lancet Infect Dis. 2020 May;20(5):565-574. (PMID: 32213337)
Emerg Infect Dis. 2020 Jul;26(7):1478-1488. (PMID: 32267220)
Science. 2020 Aug 14;369(6505):812-817. (PMID: 32434946)
JAMA. 2020 Aug 4;324(5):460-470. (PMID: 32492084)
Virology. 2005 Apr 10;334(2):306-18. (PMID: 15780881)
Cell Mol Immunol. 2020 May;17(5):536-538. (PMID: 32132669)
Virology. 2018 Apr;517:9-15. (PMID: 29217279)
Vaccines (Basel). 2020 Jul 15;8(3):. (PMID: 32679691)
Immunity. 2020 Jul 14;53(1):98-105.e5. (PMID: 32561270)
Virology. 2010 Sep 15;405(1):139-48. (PMID: 20580052)
Cell. 2020 Apr 16;181(2):271-280.e8. (PMID: 32142651)
Immunity. 2020 Jun 16;52(6):971-977.e3. (PMID: 32413330)
Euro Surveill. 2020 Mar;25(10):. (PMID: 32183934)
Nat Med. 2004 Dec;10(12 Suppl):S88-97. (PMID: 15577937)
N Engl J Med. 2020 Sep 10;383(11):1085-1087. (PMID: 32706954)
Virus Res. 2011 Sep;160(1-2):283-93. (PMID: 21798295)
J Virol. 2003 Aug;77(16):8801-11. (PMID: 12885899)
Viruses. 2020 May 06;12(5):. (PMID: 32384820)
Aging (Albany NY). 2021 Mar 18;13(6):7758-7766. (PMID: 33735836)
Clin Chem Lab Med. 2020 Jun 25;58(7):1037-1052. (PMID: 32459192)
Nat Commun. 2015 Sep 29;6:8443. (PMID: 26416571)
معلومات مُعتمدة: T32 AI007647 United States AI NIAID NIH HHS; R01 AI123449 United States AI NIAID NIH HHS; HHSN272201400008C United States AI NIAID NIH HHS; UL1 TR001433 United States TR NCATS NIH HHS; R21 AI148033 United States AI NIAID NIH HHS; I01 BX003860 United States BX BLRD VA; R01 AI116851 United States AI NIAID NIH HHS; IK6 BX004607 United States BX BLRD VA; R21 AI149033 United States AI NIAID NIH HHS; R01 AI143839 United States AI NIAID NIH HHS; R01 AI125536 United States AI NIAID NIH HHS; 75N93019C00051 United States AI NIAID NIH HHS; R01 AI139290 United States AI NIAID NIH HHS; I01 BX005794 United States BX BLRD VA; F31 AI154739 United States AI NIAID NIH HHS
فهرسة مساهمة: Keywords: COVID-19; SARS-CoV-2; convalescent-phase plasma; neutralizing antibodies; viral neutralization assay
المشرفين على المادة: 0 (Antibodies, Neutralizing)
0 (Antibodies, Viral)
تواريخ الأحداث: Date Created: 20210217 Date Completed: 20210301 Latest Revision: 20231107
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8545089
DOI: 10.1128/mBio.02492-20
PMID: 33593976
قاعدة البيانات: MEDLINE
الوصف
تدمد:2150-7511
DOI:10.1128/mBio.02492-20