دورية أكاديمية

Bacillus Toyonensis BCT-7112 T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model.

التفاصيل البيبلوغرافية
العنوان: Bacillus Toyonensis BCT-7112 T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model.
المؤلفون: Santos FDS; Biotechnology Department, Center for Technological Development, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil., Maubrigades LR; Biotechnology Department, Center for Technological Development, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil., Gonçalves VS; Biotechnology Department, Center for Technological Development, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil., Franz HC; Veterinary School, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil., Rodrigues PRC; Veterinary School, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil., Cunha RC; Biotechnology Department, Center for Technological Development, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil.; Veterinary School, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil., Leite FPL; Biotechnology Department, Center for Technological Development, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, 96160-900, Brazil. fleivasleite@gmail.com.
المصدر: Probiotics and antimicrobial proteins [Probiotics Antimicrob Proteins] 2021 Jun; Vol. 13 (3), pp. 655-663. Date of Electronic Publication: 2021 Feb 19.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101484100 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1867-1314 (Electronic) Linking ISSN: 18671306 NLM ISO Abbreviation: Probiotics Antimicrob Proteins Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY. : Springer
مواضيع طبية MeSH: Adjuvants, Immunologic* , Bacillus*/immunology, Herpesviridae Infections/*prevention & control , Viral Vaccines/*immunology, Animals ; Disease Models, Animal ; Herpesvirus 5, Bovine ; Interleukin-12 ; Interleukin-4 ; Mice ; Oligopeptides ; Spores, Bacterial/immunology
مستخلص: Bacterial spores of the genus Bacillus are being evaluated as adjuvant molecules capable of improving the immune response to vaccines. In this study, we investigate whether subcutaneously administered spores of B. toyonensis BCT-7112 T could enhance a vaccine immune response in mice. Three groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: 40 µg of recombinant glycoprotein D (rgD) from bovine herpesvirus type 5 (BoHV-5) adsorbed in 10% aluminum hydroxide (alum) without B. toyonensis spores (group 1) and B. toyonensis (1 × 10 6 viable spores) + 40 µg of rgD adsorbed in 10% alum (group 2); and B. toyonensis (1 × 10 6 viable spores) without rgD (group 3). Group 2 showed significantly higher titers (P < 0.05) of total specific serum IgG, IgG2a, and neutralizing antibodies, when compared with the groups 1 and 3. A significantly higher (P < 0.05) transcription level of cytokines IL-4, IL-12, and IFN-γ was observed in splenocytes from mice that received the B. toyonensis spores in the vaccine formulation. In addition, stimulation of the macrophage-like cell line RAW264.7 with spores of B. toyonensis markedly enhanced the cell proliferation and mRNA transcription levels of IL-4, and IL-12 cytokines in these cells. Our findings indicated that the subcutaneous administration of B. toyonensis BCT-7112 T spores enhanced the humoral and cellular immune response against BoHV-5 in mice.
References: Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. https://doi.org/10.1016/j.fm.2010.03.007. (PMID: 10.1016/j.fm.2010.03.00721315976)
Lambrecht BN, Kool M, Willart MA, Hammad H (2009) Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 21(1):23–29. https://doi.org/10.1016/j.coi.2009.01.004. (PMID: 10.1016/j.coi.2009.01.00419246182)
Reed SG, Bertholet S, Coler RN, Friede M (2009) New horizons in adjuvants for vaccine development. Trends Immunol 30(1):23–32. https://doi.org/10.1016/j.it.2008.09.006. (PMID: 10.1016/j.it.2008.09.00619059004)
Montomoli E, Piccirella S, Khadang B, Mennitto E, Camerini R, De Rosa A (2011) Current adjuvants and new perspectives in vaccine formulation. Expert Rev Vaccines 10(7):1053–1061. https://doi.org/10.1586/erv.11.48. (PMID: 10.1586/erv.11.4821806399)
Ricca E, Baccigalupi L, Cangiano G, Felice M, Isticato R (2014) Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis. Microb Cell Fact 13:1–9. https://doi.org/10.1186/s12934-014-0115-2. (PMID: 10.1186/s12934-014-0115-2)
Barnes AGC, Cerovic V, Hobson PS, Klavinskis LS (2007) Bacillus subtilis spores: a novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. Eur J Immunol 37(6):1538–1547. https://doi.org/10.1002/eji.200636875. (PMID: 10.1002/eji.20063687517474150)
Huang J, Hong HA, Tong HV, Hoang TH, Brisson A, Cutting SM (2010) Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 28(4):1021–1030. https://doi.org/10.1016/j.vaccine.2009.10.127. (PMID: 10.1016/j.vaccine.2009.10.12719914191)
de Souza RD, Batista MT, Luiz WB, Cavalcante RCM, Amorim JH, Bizerra RSP, Martins EG, Ferreira LCS (2014) Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action. PLoS One 9(1):e87454. https://doi.org/10.1371/journal.pone.0087454. (PMID: 10.1371/journal.pone.0087454244752893903701)
Vogel FSF, Caron L, Flores EF, Weiblen R, Winkelmann ER, Mayer SV, Bastos RG (2003) Distribution of bovine herpesvirus type 5 DNA in the central nervous systems of latently, experimentally infected calves. J Clin Microbiol 41(10):4512–4520. https://doi.org/10.1128/JCM.41.10.4512-4520.2003. (PMID: 10.1128/JCM.41.10.4512-4520.200314532175294956)
Campos FS, Dezen D, Antunes DA, Santos HF, Arantes TS, Cenci A, Gomes F, Lima FES, Brito WMED, Filho HCK, Batista HBCR, Spilki FR, Franco AC, Rijsewijk FAM, Roehe PM (2011) Efficacy of an inactivated, recombinant bovine herpesvirus type 5 (BoHV-5) vaccine. Vet Microbiol 148(1):18–26. https://doi.org/10.1016/j.vetmic.2010.08.004. (PMID: 10.1016/j.vetmic.2010.08.00420828945)
Dummer LA, Leite FPL, Van Den Hurk SVDL (2014) Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 45(1):111. https://doi.org/10.1186/s13567-014-0111-x. (PMID: 10.1186/s13567-014-0111-x)
Babiuk LA, Van Drunen Littel-Van Den Hurk S, Tikoo SK (1996) Immunology of bovine herpesvirus 1 infection. Vet Microbiol 53(1–2):31–42. https://doi.org/10.1016/S0378-1135(96)01232-1. (PMID: 10.1016/S0378-1135(96)01232-19010996)
Varela APM, Holz CL, Cibulski SP, Teixeira TF, Antunes DA, Franco AC, Roehe LR, Oliveira MT, Campos FS, Dezen D, Cenci A, Brito WD, Roehe PM (2010) Neutralizing antibodies to bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) and its subtypes. Vet Microbiol 142(3–4):254–260. https://doi.org/10.1016/j.vetmic.2009.10.016. (PMID: 10.1016/j.vetmic.2009.10.01619926411)
Jiménez G, Urdiain M, Cifuentes A, López-lópez A, Blanch AR, Tamames J, Kämpfer P, Kolstø A, Ramón D, Rosselló-móra R, Martínez JF, Codo FM (2013) Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst Appl Microbiol 36(6):383–391. https://doi.org/10.1016/j.syapm.2013.04.008.
Kantas D, Papatsiros VG, Tassis PD, Giavasis I, Bouki P, Tzika ED (2015) A feed additive containing Bacillus toyonensis (Toyocerin ® ) protects against enteric pathogens in postweaning piglets. J Appl Microbiol 118(3):727–738. https://doi.org/10.1111/jam.12729. (PMID: 10.1111/jam.1272925512110)
Williams LD, Burdock GA, Jiménez G, Castillo M (2009) Literature review on the safety of Toyocerin, a non-toxigenic and non-pathogenic Bacillus cereus var. toyoi preparation. Regul Toxicol Pharmacol 55(2):236–246. https://doi.org/10.1016/j.yrtph.2009.07.009.
Roos TB, de Lara AP SS, Dummer LA, Fischer G, Leite FPL (2012) The immune modulation of Bacillus cereus var. Toyoi in mice immunized with experimental inactivated Bovine Herpesvirus Type 5 vaccine. Vaccine 30(12):2173–2177.  https://doi.org/10.1016/j.vaccine.2012.01.007.
Santos FDS, Menegon YA, Piraine REA, Rodrigues PRC, Cunha RC, Leite FPL (2018) Bacillus toyonensis improves immune response in the mice vaccinated with recombinant antigen of bovine herpesvirus type 5. Benef Microbes 9(1):133–142. https://doi.org/10.3920/BM2017.0021. (PMID: 10.3920/BM2017.002129022386)
Santos FDS, Mazzoli A, Maia AR, Saggese A, Isticato R, Leite F, Iossa S, Ricca E, Baccigalupi L (2020) A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC. Microb Cell Fact 19(1):42. https://doi.org/10.1186/s12934-020-01308-1. (PMID: 10.1186/s12934-020-01308-1320756607029466)
Yousten AA (1984) Bacillus sphaericus: microbiological factors related to its potential as a mosquito larvicide. Adv Biotechnol Processes 3:315–343. (PMID: 6152689)
Tavares MB, de Souza RD, Luiz WB, Cavalcante RCM, Casaroli C, Martins EG, Ferreira RCC, Ferreira LCS (2013) Bacillus subtilis endospores at high purity and recovery yields: optimization of growth conditions and purification method. Curr Microbiol 66(3):279–285. https://doi.org/10.1007/s00284-012-0269-2. (PMID: 10.1007/s00284-012-0269-223183956)
Dummer LA, Conceição FR, Nizoli LQ, de Moraes CM, Rocha AR, de Souza LL, Roos T, Vidor T, Leite FPL (2009) Cloning and expression of a truncated form of envelope glycoprotein D of bovine herpesvirus type 5 in methylotrophic yeast Pichia pastoris. J Virol Methods 161(1):84–90. https://doi.org/10.1016/j.jviromet.2009.05.022. (PMID: 10.1016/j.jviromet.2009.05.02219501621)
Dummer LA, Araujo IL, Finger PF, dos Santos AG, da Rosa MC, Conceição FR, Fischer G, van Drunen Littel-van den Hurk S, Leite FPL (2014) Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. Vaccine 32(21):2413–2419. https://doi.org/10.1016/j.vaccine.2014.03.011. (PMID: 10.1016/j.vaccine.2014.03.01124657716)
Fischer G, Conceição FR, Leite FPL, Dummer LA, Vargas GDA, Hübner SO, Dellagostin OA, Paulino N, Paulino AS, Vidor T (2007) Immunomodulation produced by a green propolis extract on humoral and cellular responses of mice immunized with SuHV-1. Vaccine 25(7):1250–1256. https://doi.org/10.1016/j.vaccine.2006.10.005. (PMID: 10.1016/j.vaccine.2006.10.00517084001)
Cardona PJ, Gordillo S, Díaz J, Tapia G, Amat I, Pallarés Á, Vilaplana C, Ariza A, Ausina V (2003) Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection with Mycobacterium tuberculosis. Infect Immun 71(10):5845–5854. https://doi.org/10.1128/IAI.71.10.5845-5854.2003. (PMID: 10.1128/IAI.71.10.5845-5854.200314500506201050)
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele JWC (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.12621184660911846609)
Schierack P, Wieler LH, Taras D, Herwig V, Tachu B, Hlinak A, Schmidt MFG, Scharek L (2007) Bacillus cereus var. toyoi enhanced systemic immune response in piglets. Vet Immunol Immunopathol 118(1−2):1−11.  https://doi.org/10.1016/j.vetimm.2007.03.006.
Chieppa M, Rescigno M, Huang AYC, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13):2841–2852. https://doi.org/10.1084/jem.20061884. (PMID: 10.1084/jem.20061884171459582118178)
Duc LH, Hong HA, Fairweather N, Ricca E, Cutting SM (2003) Bacterial spores as vaccine vehicles. Infect Immun 71(5):2810–2818. https://doi.org/10.1128/IAI.71.5.2810-2818.2003. (PMID: 10.1128/IAI.71.5.2810-2818.2003153275)
Lebeer S, Vanderleyden J, Keersmaecker SCJ (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184. https://doi.org/10.1038/nrmicro2297. (PMID: 10.1038/nrmicro229720157338)
Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835. https://doi.org/10.1016/j.femsre.2004.12.001. (PMID: 10.1016/j.femsre.2004.12.00116102604)
Aps LRMM, Diniz MO, Porchia BFMM, Sales NS, Moreno ACR, Ferreira LCS (2015) Bacillus subtilis spores as adjuvants for DNA vaccines. Vaccine 33:2328–2334. https://doi.org/10.1016/j.vaccine.2015.03.043. (PMID: 10.1016/j.vaccine.2015.03.04325819710)
Cerovic V, Jenkins CD, Barnes AGC, Milling SWF, MacPherson GG, Klavinskis LS (2009) Hyporesponsiveness of intestinal dendritic cells to TLR stimulation is limited to TLR4. J Immunol 182:2405–2415. https://doi.org/10.4049/jimmunol.0802318. (PMID: 10.4049/jimmunol.080231819201895)
Xu X, Huang Q, Mao Y, Cui Z, Li Y, Huang Y, Rajput IR, Yu D, Li W (2012) Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages. Microbiol Immunol 56:817–824. https://doi.org/10.1111/j.1348-0421.2012.00508.x. (PMID: 10.1111/j.1348-0421.2012.00508.x22957751)
Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. https://doi.org/10.1016/j.immuni.2010.05.007. (PMID: 10.1016/j.immuni.2010.05.00720510870)
Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–1288. https://doi.org/10.1126/science.1204351. (PMID: 10.1126/science.1204351215661583128495)
Grohmann U, Belladonna ML, Vacca C, Bianchi R, Fallarino F, Orabona C, Fioretti MC, Puccetti P (2001) Positive regulatory role of IL-12 in macrophages and modulation by IFN-γ. J Immunol 167:221–227. https://doi.org/10.4049/jimmunol.167.1.221. (PMID: 10.4049/jimmunol.167.1.22111418652)
United States Department of Agriculture (USDA) (2005) Animal and Plant Health Inspection Service. pp. 683–684.
Coutelier JT, Van der Logt JTM, Heessen FW, Warnier G, Van Snick J (1987) IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med 165:64–69. (PMID: 10.1084/jem.165.1.64)
Markine-Goriaynoff D, Coutelier JP (2002) Increased efficacy of the immunoglobulin G2a subclass in antibody-mediated protection against lactate dehydrogenase-elevating virus-induced polioencephalomyelitis revealed with switch mutants. J Virol 76:432–435. https://doi.org/10.1128/JVI.76.1.432-435.2002. (PMID: 10.1128/JVI.76.1.432-435.200211739710135718)
Klasse PJ (2014) Neutralization of virus infectivity by antibodies : old problems in new perspectives. Adv Biol 2014(2014):157895. https://doi.org/10.1155/2014/157895. (PMID: 10.1155/2014/157895270998674835181)
Giroux M, Schmidt M, Descoteaux A (2003) IFN-γ-induced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor-1 is regulated by protein kinase C-α. J Immunol 171:4187–4194. https://doi.org/10.4049/jimmunol.171.8.4187. (PMID: 10.4049/jimmunol.171.8.418714530341)
Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146. https://doi.org/10.1038/nri1001. (PMID: 10.1038/nri100112563297)
Finkelman FD, Holmes J, Katona IM, Urban JF, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–333. https://doi.org/10.1146/annurev.iy.08.040190.001511. (PMID: 10.1146/annurev.iy.08.040190.0015111693082)
Paul WE, Zhu J, Yamane H (2010) Determination of effector CD4 T cell populations. Annu Rev Immunol 28:445–489. https://doi.org/10.1038/nri2735. (PMID: 10.1038/nri2735201928063502616)
فهرسة مساهمة: Keywords: Bacillus; Cytokines; Immunomodulation; Spore; Vaccine
المشرفين على المادة: 0 (Adjuvants, Immunologic)
0 (Oligopeptides)
0 (Viral Vaccines)
187348-17-0 (Interleukin-12)
207137-56-2 (Interleukin-4)
SCR Organism: Bacillus toyonensis
تواريخ الأحداث: Date Created: 20210220 Date Completed: 20211229 Latest Revision: 20211229
رمز التحديث: 20240628
DOI: 10.1007/s12602-021-09753-z
PMID: 33608827
قاعدة البيانات: MEDLINE
الوصف
تدمد:1867-1314
DOI:10.1007/s12602-021-09753-z