دورية أكاديمية

Femtosecond laser-assisted stromal keratophakia for keratoconus: A systemic review and meta-analysis.

التفاصيل البيبلوغرافية
العنوان: Femtosecond laser-assisted stromal keratophakia for keratoconus: A systemic review and meta-analysis.
المؤلفون: Riau AK; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.; Duke-NUS Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore., Htoon HM; Duke-NUS Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore.; Data Science Unit, Singapore Eye Research Institute, Singapore, Singapore., Alió Del Barrio JL; Cornea, Cataract, and Refractive Surgery Unit, Vissum (Grupo Miranza), Alicante, Spain.; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain., Nubile M; Department of Medicine and Sciences of Ageing, Ophthalmic Clinic, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy., El Zarif M; Optica General, Saida, Lebanon., Mastropasqua L; Department of Medicine and Sciences of Ageing, Ophthalmic Clinic, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy., Alió JL; Cornea, Cataract, and Refractive Surgery Unit, Vissum (Grupo Miranza), Alicante, Spain.; Division of Ophthalmology, Universidad Miguel Hernández, Alicante, Spain., Mehta JS; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. jodmehta@gmail.com.; Duke-NUS Medical School, Ophthalmology and Visual Sciences Academic Clinical Programme, Singapore, Singapore. jodmehta@gmail.com.; Singapore National Eye Centre, Singapore, Singapore. jodmehta@gmail.com.
المصدر: International ophthalmology [Int Ophthalmol] 2021 May; Vol. 41 (5), pp. 1965-1979. Date of Electronic Publication: 2021 Feb 20.
نوع المنشور: Journal Article; Meta-Analysis; Review; Systematic Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Country of Publication: Netherlands NLM ID: 7904294 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2630 (Electronic) Linking ISSN: 01655701 NLM ISO Abbreviation: Int Ophthalmol Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht : Kluwer
Original Publication: The Hague, Junk.
مواضيع طبية MeSH: Keratoconus*/diagnosis , Keratoconus*/surgery, Cornea/surgery ; Corneal Stroma/surgery ; Humans ; Lasers ; Refraction, Ocular
مستخلص: Purpose: Femtosecond lasers have revived the possibility of stromal keratophakia or tissue additive keratoplasty, a technique originally introduced by Prof. Jose Ignacio Barraquer in the 1960s. The surgical technique offers a unique solution to treat keratoconus. In the current study, we reviewed and performed a meta-analysis of the clinical outcomes of the femtosecond laser-assisted stromal keratophakia in the treatment of keratoconus.
Methods: This is a systematic review and meta-analysis of the estimated outcome difference between pre- and post-lenticule implantations.
Results: A total of related 10 studies were found in the literature. No studies reported adverse events, such as persistent haze or graft rejection, at last patients' visits. We further narrowed down the article selection in accordance to our inclusion criteria to report the composite outcomes (9 studies) and meta-analysis (4 studies). In the composite analysis, we demonstrated that lenticule implantation in keratoconus and post-LASIK ectasia patients appeared to expand the stromal volume of the thin corneas, flattened the cones, and significantly improved uncorrected visual acuity (UCVA), best-corrected visual acuity (BCVA) and spherical equivalent (SE). The meta-analysis showed that the random estimated UCVA, BCVA, SE and mean keratometry (K m ) differences following the lenticule implantation was -0.214 (95% CI: -0.367 to 0.060; p = 0.006), -0.169 (-0.246 to 0.091; p < 0.001), -2.294 D (-3.750 to -0.839 D; p = 0.002), and 2.909 D (0.805 to 5.012 D; p = 0.007), respectively.
Conclusions: Femtosecond laser-assisted stromal keratophakia is a feasible technique to correct the refractive aberrations, expand corneal volume and regularize corneal curvature in patients with keratoconus. However, there is a need to standardize the technique (e.g., whether to crosslink or not or to use convex or concave lenticules) and to formulate a mathematical model that accounts for the long-term epithelial thickness changes and stromal remodeling to determine the shape or profile of the lenticules, in order to improve the efficacy of the keratophakia further.
References: Rabinowitz YS (1998) Keratoconus. Surv Ophthalmol 42:297–319. https://doi.org/10.1016/s0039-6257(97)00119-7. (PMID: 10.1016/s0039-6257(97)00119-79493273)
Alió JL, Shabayek MH (2006) Corneal higher order aberrations: a method to grade keratoconus. J Refract Surg 22:539–545. (PMID: 10.3928/1081-597X-20060601-05)
Belin MW, Duncan JK (2016) Keratoconus: The ABCD grading system. Klin Monbl Augenheilkd 233:701–707. (PMID: 10.1055/s-0042-100626)
Fan Gaskin JC, Patel DV, McGhee CNJ (2014) Acute corneal hydrops in keratoconus-new perspectives. Am J Ophthalmol 157:921–928. https://doi.org/10.1016/j.ajo.2014.01.017. (PMID: 10.1016/j.ajo.2014.01.01724491416)
Arnalich-Montiel F, Alió Del Barrio JL, Alió JL (2016) Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis 3:2. https://doi.org/10.1186/s40662-016-0033-y. (PMID: 10.1186/s40662-016-0033-y)
Katsoulos C, Karageorgiadis L, Vasileiou N et al (2009) Customized hydrogel contact lenses for keratoconus incorporating correction for vertical coma aberration. Ophthalmic Physiol Opt 29:321–329. https://doi.org/10.1111/j.1475-1313.2009.00645.x. (PMID: 10.1111/j.1475-1313.2009.00645.x19422564)
Ortiz-Toquero S, Martin R (2017) Current optometric practices and attitudes in keratoconus patient management. Cont Lens Anterior Eye 40:253–259. https://doi.org/10.1016/j.clae.2017.03.005. (PMID: 10.1016/j.clae.2017.03.00528325632)
Piñero DP, Alio JL (2010) Intracorneal ring segments in ectatic corneal disease - a review. Clin Experiment Ophthalmol 38:154–167. https://doi.org/10.1111/j.1442-9071.2010.02197.x. (PMID: 10.1111/j.1442-9071.2010.02197.x20398105)
Riau AK, Lwin NC, Gelfand L et al (2020) Surface modification of corneal prosthesis with nano-hydroxyapatite to enhance in vivo biointegration. Acta Biomater 107:299–312. https://doi.org/10.1016/j.actbio.2020.01.023. (PMID: 10.1016/j.actbio.2020.01.02331978623)
Coskunseven E, Kymionis GD, Tsiklis NS et al (2011) Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: a survey of 850 eyes with keratoconus. Acta Ophthalmol 89:54–57. https://doi.org/10.1111/j.1755-3768.2009.01605.x. (PMID: 10.1111/j.1755-3768.2009.01605.x19681760)
Kanellopoulos AJ, Pe LH, Perry HD, Donnenfeld ED (2006) Modified intracorneal ring segment implantations (INTACS) for the management of moderate to advanced keratoconus: efficacy and complications. Cornea 25:29–33. https://doi.org/10.1097/01.ico.0000167883.63266.60. (PMID: 10.1097/01.ico.0000167883.63266.6016331037)
Sykakis E, Karim R, Evans JR et al (2015) Corneal collagen cross-linking for treating keratoconus. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010621.pub2. (PMID: 10.1002/14651858.CD010621.pub225803325)
Hersh PS, Stulting RD, Muller D et al (2017) U.S. multicenter clinical trial of corneal collagen crosslinking for treatment of corneal ectasia after refractive surgery. Ophthalmology 124:1475–1484. https://doi.org/10.1016/j.ophtha.2017.05.036. (PMID: 10.1016/j.ophtha.2017.05.03628655538)
Ferdi AC, Nguyen V, Gore DM et al (2019) Keratoconus natural progression: A systematic review and meta-analysis of 11 529 eyes. Ophthalmology 126:935–945. https://doi.org/10.1016/j.ophtha.2019.02.029. (PMID: 10.1016/j.ophtha.2019.02.02930858022)
Lin DTC, Holland S, Tan JCH, Moloney G (2012) Clinical results of topography-based customized ablations in highly aberrated eyes and keratoconus/ectasia with cross-linking. J Refract Surg 28:S841–S848. https://doi.org/10.3928/1081597x-20121005-06. (PMID: 10.3928/1081597x-20121005-0623447899)
Legare ME, Iovieno A, Yeung SN et al (2013) Intacs with or without same-day corneal collagen cross-linking to treat corneal ectasia. Can J Ophthalmol 48:173–178. https://doi.org/10.1016/j.jcjo.2013.02.001. (PMID: 10.1016/j.jcjo.2013.02.00123769778)
Izquierdo LJ, Henriquez MA, McCarthy M (2011) Artiflex phakic intraocular lens implantation after corneal collagen cross-linking in keratoconic eyes. J Refract Surg 27:482–487. https://doi.org/10.3928/1081597X-20101223-02. (PMID: 10.3928/1081597X-20101223-0221210571)
Jhanji V, Sharma N, Vajpayee RB (2011) Management of keratoconus: current scenario. Br J Ophthalmol 95:1044–1050. https://doi.org/10.1136/bjo.2010.185868. (PMID: 10.1136/bjo.2010.18586820693553)
Bahar I, Kaiserman I, Srinivasan S et al (2008) Comparison of three different techniques of corneal transplantation for keratoconus. Am J Ophthalmol 146:905–12.e1. https://doi.org/10.1016/j.ajo.2008.06.034. (PMID: 10.1016/j.ajo.2008.06.03418723138)
Luengo-Gimeno F, Tan DT, Mehta JS (2011) Evolution of deep anterior lamellar keratoplasty (DALK). Ocul Surf 9:98–110. https://doi.org/10.1016/s1542-0124(11)70017-9. (PMID: 10.1016/s1542-0124(11)70017-921545763)
Riau AK, Liu Y-C, Yam GHF, Mehta JS (2020) Stromal keratophakia: Corneal inlay implantation. Prog Retin Eye Res 75:100780. https://doi.org/10.1016/j.preteyeres.2019.100780. (PMID: 10.1016/j.preteyeres.2019.10078031493488)
Swinger CA, Barraquer JI (1981) Keratophakia and keratomileusis–clinical results. Ophthalmology 88:709–715. (PMID: 10.1016/S0161-6420(81)34958-6)
Ainslie D (1976) The surgical correction of refractive errors by keratomileusis and keratophakia. Ann Ophthalmol 8:349–367. (PMID: 944547)
Riau AK, Angunawela RI, Chaurasia SS et al (2013) Reversible femtosecond laser-assisted myopia correction: a non-human primate study of lenticule re-implantation after refractive lenticule extraction. PLoS ONE 8:e67058. https://doi.org/10.1371/journal.pone.0067058. (PMID: 10.1371/journal.pone.0067058238261943691223)
Angunawela RI, Riau AK, Chaurasia SS et al (2012) Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci 53:4975–4985. https://doi.org/10.1167/iovs.12-10170. (PMID: 10.1167/iovs.12-1017022743323)
Jacob S, Kumar DA, Agarwal A et al (2017) Preliminary evidence of successful near vision enhancement with a new technique: PrEsbyopic Allogenic Refractive Lenticule (PEARL) corneal inlay using a SMILE Lenticule. J Refract Surg 33:224–229. https://doi.org/10.3928/1081597X-20170111-03. (PMID: 10.3928/1081597X-20170111-0328407161)
Ganesh S, Brar S, Rao PA (2014) Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea 33:1355–1362. https://doi.org/10.1097/ICO.0000000000000276. (PMID: 10.1097/ICO.0000000000000276253436984218759)
Pradhan KR, Reinstein DZ, Carp GI et al (2013) Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg 29:777–782. https://doi.org/10.3928/1081597X-20131021-07. (PMID: 10.3928/1081597X-20131021-0724203809)
Perez VL, Saeed AM, Tan Y et al (2013) The eye: A window to the soul of the immune system. J Autoimmun 45:7–14. https://doi.org/10.1016/j.jaut.2013.06.011. (PMID: 10.1016/j.jaut.2013.06.01123871641)
Zhao J, Shang J, Niu L et al (2019) Two-year outcome of an eye that underwent hyperopic LASIK following inadvertent myopic SMILE lenticule in situ implantation. BMC Ophthalmol 19:176. https://doi.org/10.1186/s12886-019-1188-9. (PMID: 10.1186/s12886-019-1188-9313950526686401)
Lim CH, Riau AK, Lwin NC et al (2013) LASIK following small incision lenticule extraction (SMILE) lenticule re-implantation: a feasibility study of a novel method for treatment of presbyopia. PLoS ONE 8:e83046. https://doi.org/10.1371/journal.pone.0083046. (PMID: 10.1371/journal.pone.0083046243494293859649)
Damgaard IB, Liu YC, Riau AK et al (2019) Corneal remodelling and topography following biological inlay implantation with combined crosslinking in a rabbit model. Sci Rep 9:4479. https://doi.org/10.1038/s41598-019-39617-0. (PMID: 10.1038/s41598-019-39617-0308725966418097)
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. (PMID: 10.1016/0197-2456(86)90046-2)
Borenstein M (2009) Effect sizes for continuous data. In: Cooper H, Hedges L V, Valentine JC (eds) The handbook of research synthesis and meta-analysis, 2nd ed. New York, pp 221–235.
Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557. (PMID: 10.1136/bmj.327.7414.5571295812012958120)
Pradhan KR, Reinstein DZ, Vida RS et al (2019) Femtosecond laser-assisted small incision Sutureless Intrastromal Lamellar Keratoplasty (SILK) for corneal transplantation in keratoconus. J Refract Surg 35:663–671. https://doi.org/10.3928/1081597X-20190826-01. (PMID: 10.3928/1081597X-20190826-0131610008)
Mastropasqua L, Nubile M, Salgari N, Mastropasqua R (2018) Femtosecond laser-assisted stromal lenticule addition keratoplasty for the treatment of advanced keratoconus: A preliminary study. J Refract Surg 34:36–44. https://doi.org/10.3928/1081597X-20171004-04. (PMID: 10.3928/1081597X-20171004-0429315440)
Li M, Zhao F, Li M et al (2018) Treatment of corneal ectasia by implantation of an allogenic corneal lenticule. J Refract Surg 34:347–350. https://doi.org/10.3928/1081597X-20180323-01. (PMID: 10.3928/1081597X-20180323-0129738592)
Jadidi K, Mosavi SA (2018) Keratoconus treatment using femtosecond-assisted intrastromal corneal graft (FAISCG) surgery: A case series. Int Med Case Rep J 11:9–15. https://doi.org/10.2147/IMCRJ.S152884. (PMID: 10.2147/IMCRJ.S152884294163805790099)
Jadidi K, Hasanpour H (2017) Unilateral keratectasia treated with femtosecond fashioned intrastromal corneal inlay. J Ophthalmic Vis Res 12:333–337. (PMID: 10.4103/jovr.jovr_227_15)
Jacob S, Patel SR, Agarwal A et al (2018) Corneal Allogenic Intrastromal Ring Segments (CAIRS) combined with corneal cross-linking for keratoconus. J Refract Surg 34:296–303. https://doi.org/10.3928/1081597X-20180223-01. (PMID: 10.3928/1081597X-20180223-0129738584)
Ganesh S, Brar S (2015) Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus–Initial clinical result in 6 eyes. Cornea 34:1331–1339. https://doi.org/10.1097/ICO.0000000000000539. (PMID: 10.1097/ICO.000000000000053926252741)
Almodin EM, Ferrara P, Camin FMA, Colallilo JMA (2018) Femtosecond laser-assisted intrastromal corneal lenticule implantation for treatment of advanced keratoconus in a child’s eye. JCRS Online Case Rep 6:25–29. https://doi.org/10.1016/j.jcro.2018.01.004. (PMID: 10.1016/j.jcro.2018.01.004)
Alió JL, Alió Del Barrio JL, El Zarif M et al (2019) Regenerative surgery of the corneal stroma for advanced keratoconus: 1-year outcomes. Am J Ophthalmol 203:53–68. https://doi.org/10.1016/j.ajo.2019.02.009. (PMID: 10.1016/j.ajo.2019.02.00930772348)
Jin H, He M, Liu H et al (2019) Small-incision femtosecond laser-assisted intracorneal concave lenticule implantation in patients with keratoconus. Cornea 38:446–453. https://doi.org/10.1097/ICO.0000000000001877. (PMID: 10.1097/ICO.0000000000001877308406096407908)
Mastropasqua L, Nubile M (2017) Corneal thickening and central flattening induced by femtosecond laser hyperopic-shaped intrastromal lenticule implantation. Int Ophthalmol 37:893–904. https://doi.org/10.1007/s10792-016-0349-6. (PMID: 10.1007/s10792-016-0349-627628587)
Liu YC, Ang HP, Teo EP et al (2016) Wound healing profiles of hyperopic-small incision lenticule extraction (SMILE). Sci Rep 6:29802. https://doi.org/10.1038/srep29802. (PMID: 10.1038/srep29802274183304945911)
Mansoor H, Ong HS, Riau AK et al (2019) Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci 20:2853. https://doi.org/10.3390/ijms20122853. (PMID: 10.3390/ijms201228536627168)
El Zarif M, Jawad KA, Alió Del Barrio JL et al (2020) Corneal stroma cell density evolution in keratoconus corneas following the implantation of adipose mesenchymal stem cells and corneal laminas: An in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 61:22. https://doi.org/10.1167/iovs.61.4.22. (PMID: 10.1167/iovs.61.4.22323019737401496)
Deeks J, Higgins J, Altman D (2020) Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins J, Thomas J, Chandler J, et al (eds) Cochrane Handbook for Systematic Reviews of Interventions. Cochrane.
Damgaard IB, Riau AK, Liu YC et al (2018) Reshaping and customization of SMILE-derived biological lenticules for intrastromal implantation. Invest Ophthalmol Vis Sci 59:2555–2563. https://doi.org/10.1167/iovs.17-23427. (PMID: 10.1167/iovs.17-2342729847663)
Raiskup F, Hoyer A, Spoerl E (2009) Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg 25:S824–S828. https://doi.org/10.3928/1081597X-20090813-12. (PMID: 10.3928/1081597X-20090813-1219772259)
Damgaard IB, Ivarsen A, Hjortdal J (2018) Biological lenticule implantation for correction of hyperopia: An ex vivo study in human corneas. J Refract Surg 34:245–252. https://doi.org/10.3928/1081597X-20180206-01. (PMID: 10.3928/1081597X-20180206-0129634839)
Ghabcha M, Sutton G, Petsoglou C et al (2020) Donation of discarded ocular tissue in patients undergoing SMILE laser refractive surgery: developing appropriate guidelines. Cell Tissue Bank. https://doi.org/10.1007/s10561-020-09850-3. (PMID: 10.1007/s10561-020-09850-332700115)
معلومات مُعتمدة: NMRC/TCR/1021-SERI/2013 National Research Foundation Singapore; MOH-000197-00 National Medical Research Council
فهرسة مساهمة: Keywords: Femtosecond laser; Keratoconus; Keratophakia; Refractive lenticule; SMILE; Visual acuity
تواريخ الأحداث: Date Created: 20210220 Date Completed: 20210618 Latest Revision: 20210618
رمز التحديث: 20221213
DOI: 10.1007/s10792-021-01745-w
PMID: 33609200
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2630
DOI:10.1007/s10792-021-01745-w