دورية أكاديمية

Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as α-Glycosidase and Cholinesterase Inhibitors.

التفاصيل البيبلوغرافية
العنوان: Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as α-Glycosidase and Cholinesterase Inhibitors.
المؤلفون: Akocak S; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02040, Turkey., Taslimi P; Department of Biotechnology, Faculty of Science, Bartın University, Bartın, 74100, Turkey., Lolak N; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02040, Turkey., Işık M; Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey., Durgun M; Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, 63290, Turkey., Budak Y; Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, 60250, Turkey., Türkeş C; Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24100, Turkey., Gülçin İ; Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey., Beydemir Ş; Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey.; The Rectorate of Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey.
المصدر: Chemistry & biodiversity [Chem Biodivers] 2021 Apr; Vol. 18 (4), pp. e2000958. Date of Electronic Publication: 2021 Mar 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Verlag Helvetica Chimica Acta Country of Publication: Switzerland NLM ID: 101197449 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1612-1880 (Electronic) Linking ISSN: 16121872 NLM ISO Abbreviation: Chem Biodivers Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Zürich, Switzerland : Hoboken, NJ : Verlag Helvetica Chimica Acta ; Distributed in the USA by Wiley, c2004-
مواضيع طبية MeSH: Cholinesterase Inhibitors/*pharmacology , Glycoside Hydrolase Inhibitors/*pharmacology , Hypoglycemic Agents/*pharmacology , Neuroprotective Agents/*pharmacology , Sulfaguanidine/*pharmacology, Acetylcholinesterase/metabolism ; Alzheimer Disease/drug therapy ; Alzheimer Disease/metabolism ; Butyrylcholinesterase/metabolism ; Cholinesterase Inhibitors/chemical synthesis ; Cholinesterase Inhibitors/chemistry ; Diabetes Mellitus/drug therapy ; Diabetes Mellitus/metabolism ; Glycoside Hydrolase Inhibitors/chemical synthesis ; Glycoside Hydrolase Inhibitors/chemistry ; Humans ; Hypoglycemic Agents/chemical synthesis ; Hypoglycemic Agents/chemistry ; Molecular Docking Simulation ; Neuroprotective Agents/chemical synthesis ; Neuroprotective Agents/chemistry ; Sulfaguanidine/chemical synthesis ; Sulfaguanidine/chemistry ; alpha-Glucosidases/metabolism
مستخلص: A series of six N-carbamimidoyl-4-(3-substituted phenylureido)benzenesulfonamide derivatives were synthesized by reaction of sulfaguanidine with aromatic isocyanates. In vitro and in silico inhibitory effects of the novel ureido-substituted sulfaguanidine derivatives were investigated by spectrophotometric methods for α-glycosidase (α-GLY), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes associated with diabetes mellitus (DM) and Alzheimer's disease (AD). N-Carbamimidoyl-4-{[(3,4-dichlorophenyl)carbamoyl]amino}benzene-1-sulfonamide (2f) showed AChE and BChE inhibitory effects, with K I values of 515.98±45.03 nM and 598.47±59.18 nM, respectively, while N-carbamimidoyl-4-{[(3-chlorophenyl)carbamoyl]amino}benzene-1-sulfonamide (2e) showed strong α-GLY inhibitory effect, with K I values of 103.94±13.06 nM. The antidiabetic effects of the novel synthesized compounds are higher than their anti-Alzheimer's effects, because the inhibition effect of the compounds on the α-GLY with diabetic enzyme is greater than the effect on esterase enzymes. Indeed, inhibition of the metabolic enzymes is important for the treatment of DM and AD.
(© 2021 Wiley-VHCA AG, Zurich, Switzerland.)
References: M. Alipour, I. Salehi, F. G. Soufi, ‘Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus’, Iran. Red. Crescent Med. J. 2012, 14, 222-228.
G. Saravanan, P. Ponmurugan, ‘Antidiabetic effect of S-allylcysteine: effect on thyroid hormone and circulatory antioxidant system in experimental diabetic rats’, J. Diabetes Complicat. 2012, 26, 280-285.
S. M. Manschot, G.-J. Biessels, N. E. Cameron, M. A. Cotter, A. Kamal, L. J. Kappelle, W. H. Gispen, ‘Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance, hippocampal synaptic plasticity and cerebral blood flow in streptozotocin-diabetic rats’, Brain Res. 2003, 966, 274-282.
K. Takim, M. Isik, ‘Phytochemical Analysis of Paliurus spina-christi Fruit and Its Effects on Oxidative Stress and Antioxidant Enzymes in Streptozotocin-Induced Diabetic Rats’, Appl. Biochem. Biotechnol. 2020, 191, 1353-1368.
S. B. Lupien, E. J. Bluhm, D. N. Ishii, ‘Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats’, J. Neurosci. Res. 2003, 74, 512-523.
G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y.-H. Khang, G. A. Stevens, ‘National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants’, Lancet 2011, 378, 31-40.
S. S. Patel, A. Parashar, M. Udayabanu, ‘Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice’, Metab. Brain Dis. 2015, 30, 803-811.
Z.-Z. Kou, C.-Y. Li, J.-C. Hu, J.-B. Yin, D.-L. Zhang, Z.-Y. Wu, T. Ding, J. Qu, Y.-H. Liao, H. Li, ‘Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats’, Front. Neural Circuits 2014, 8, 1-10.
M. Bubser, N. Byun, M. R. Wood, C. K. Jones, in ‘Muscarinic Receptors’, Springer, 2012, pp. 121-166.
A. Sherin, J. Anu, K. Peeyush, S. Smijin, M. Anitha, B. Roshni, C. Paulose, ‘Cholinergic and GABAergic receptor functional deficit in the hippocampus of insulin-induced hypoglycemic and streptozotocin-induced diabetic rats’, Neuroscience 2012, 202, 69-76.
Y.-P. Zhu, L.-J. Yin, Y.-Q. Cheng, K. Yamaki, Y. Mori, Y.-C. Su, L.-T. Li, ‘Effects of sources of carbon and nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2’, Food Chem. 2008, 109, 737-742.
P. Taslimi, M. Işık, F. Türkan, M. Durgun, C. Türkeş, İ. Gülçin, Ş. Beydemir, ‘Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies’, J. Biomol. Struct. Dyn. 2020, 1-12.
D. K. McCulloch, A. B. Kurtz, R. B. Tattersall, ‘A new approach to the treatment of nocturnal hypoglycemia using alpha-glucosidase inhibition’, Diabetes Care 1983, 6, 483-487.
P. Fischer, G. Karlsson, T. Butters, R. Dwek, F. Platt, ‘N-Butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120’, J. Virol. 1996, 70, 7143-7152.
S. Riaz, I. U. Khan, M. Bajda, M. Ashraf, A. Shaukat, T. U. Rehman, S. Mutahir, S. Hussain, G. Mustafa, M. Yar, ‘Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer's disease: in vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase’, Bioorg. Chem. 2015, 63, 64-71.
M. Işık, S. Akocak, N. Lolak, P. Taslimi, C. Türkeş, İ. Gülçin, M. Durgun, Ş. Beydemir, ‘Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3-diaryltriazene-substituted sulfathiazole derivatives’, Arch. Pharm. 2020, 353, 1-14.
A. G. Al-Sehemi, F. A. Olotu, D. Sanal Dev, P. Mehboobali Pannipara, M. E. Soliman, S. Carradori, B. Mathew, ‘Natural Products Database Screening for the Discovery of Naturally Occurring SARS-Cov-2 Spike Glycoprotein Blockers’, ChemistrySelect 2020, 5, 13309-13317.
S. S. Kamboj, K. Chopra, R. Sandhir, ‘Neuroprotective effect of N-acetylcysteine in the development of diabetic encephalopathy in streptozotocin-induced diabetes’, Metab. Brain Dis. 2008, 23, 427-443.
N. Mushtaq, R. Schmatz, L. B. Pereira, M. Ahmad, N. Stefanello, J. M. Vieira, F. Abdalla, M. V. Rodrigues, J. Baldissarelli, L. P. Pelinson, ‘Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic rats’, Cell Biochem. Funct. 2014, 32, 287-293.
A. Kuhad, R. Sethi, K. Chopra, ‘Lycopene attenuates diabetes-associated cognitive decline in rats’, Life Sci. 2008, 83, 128-134.
R. Schmatz, C. M. Mazzanti, R. Spanevello, N. Stefanello, J. Gutierres, M. Corrêa, M. M. da Rosa, M. A. Rubin, M. R. C. Schetinger, V. M. Morsch, ‘Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats’, Eur. J. Pharmacol. 2009, 610, 42-48.
M. Işık, ‘High Stability of Immobilized Acetylcholinesterase on Chitosan Beads’, ChemistrySelect 2020, 5, 4623-4627.
H. Soreq, S. Seidman, ‘Acetylcholinesterase-new roles for an old actor’, Nat. Rev. Neurosci. 2001, 2, 294-302.
G. I. Lunkes, F. Stefanello, D. S. Lunkes, V. M. Morsch, M. R. C. Schetinger, J. F. Gonçalves, ‘Serum cholinesterase activity in diabetes and associated pathologies’, Diabetes Res. Clin. Pract. 2006, 72, 28-32.
M. Işık, ‘The binding mechanisms and inhibitory effect of intravenous anesthetics on AChE in vitro and in vivo: kinetic analysis and molecular docking’, Neurochem. Res. 2019, 44, 2147-2155.
M. Işık, Y. Demir, M. Kırıcı, R. Demir, F. Şimşek, Ş. Beydemir, ‘Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs’, Arch. Physiol. Biochem. 2015, 121, 97-102.
M. Işık, Ş. Beydemir, A. Yılmaz, M. E. Naldan, H. E. Aslan, İ. Gülçin, ‘Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients’, Biomed. Pharmacother. 2017, 87, 561-567.
M. Işık, Ş. Beydemir, ‘The impact of some phenolic compounds on serum acetylcholinesterase: kinetic analysis of an enzyme/inhibitor interaction and molecular docking study’, J. Biomol. Struct. Dyn. 2020, 1-9.
D. Ragoobirsingh, B. S. Bharaj, E. Morrison, ‘Change in serum cholinesterase activity in Jamaican diabetics’, J. Natl. Med. Assoc. 1992, 84, 853-855.
C. Abbott, M. Mackness, S. Kumar, A. Olukoga, C. Gordon, S. Arrol, D. Bhatnagar, A. Boulton, P. Durrington, ‘Relationship between serum butyrylcholinesterase activity, hypertriglyceridaemia and insulin sensitivity in diabetes mellitus’, Clin. Sci. 1993, 85, 77-81.
S. Riaz, I. U. Khan, M. Yar, M. Ashraf, T. U. Rehman, A. Shaukat, S. B. Jamal, V. C. Duarte, M. J. Alves, ‘Novel pyridine-2,4,6-tricarbohydrazide derivatives: Design, synthesis, characterization and in vitro biological evaluation as α- and β-glucosidase inhibitors’, Bioorg. Chem. 2014, 57, 148-154.
F. Pacchiano, F. Carta, P. C. McDonald, Y. Lou, D. Vullo, A. Scozzafava, S. Dedhar, C. T. Supuran, ‘Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis’, J. Med. Chem. 2011, 54, 1896-1902.
Y. Lou, P. C. McDonald, A. Oloumi, S. Chia, C. Ostlund, A. Ahmadi, A. Kyle, U. auf dem Keller, S. Leung, D. Huntsman, ‘Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors’, Cancer Res. 2011, 71, 3364-3376.
C. T. Supuran, A. Scozzafava, B. C. Jurca, M. A. Ilies, ‘Carbonic anhydrase inhibitors-Part 49: Synthesis of substituted ureido and thioureido derivatives of aromatic/heterocyclic sulfonamides with increased affinities for isozyme I’, Eur. J. Med. Chem. 1998, 33, 83-93.
S. Apaydın, M. Török, ‘Sulfonamide derivatives as multi-target agents for complex diseases’, Bioorg. Med. Chem. Lett. 2019, 29, 2042-2050.
B. Aday, R. Ulus, M. Tanç, M. Kaya, C. T. Supuran, ‘Synthesis of novel 5-amino-1,3,4-thiadiazole-2-sulfonamide containing acridine sulfonamide/carboxamide compounds and investigation of their inhibition effects on human carbonic anhydrase I, II, IV and VII’, Bioorg. Chem. 2018, 77, 101-105.
P. Taslimi, H. E. Aslan, Y. Demir, N. Oztaskin, A. Maraş, İ. Gulçin, S. Beydemir, S. Goksu, ‘Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia’, Int. J. Biol. Macromol. 2018, 119, 857-863.
M. Durgun, C. Türkeş, M. Işık, Y. Demir, A. Saklı, A. Kuru, A. Güzel, Ş. Beydemir, S. Akocak, S. M. Osman, ‘Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases’, J. Enzyme Inhib. Med. Chem. 2020, 35, 950-962.
N. Lolak, S. Akocak, C. Türkeş, P. Taslimi, M. Işık, Ş. Beydemir, İ. Gülçin, M. Durgun, ‘Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs’, Bioorg. Chem. 2020, 103897.
N. Lolak, M. Boga, M. Tuneg, G. Karakoc, S. Akocak, C. T. Supran, ‘Sulphonamides incorporating 1,3,5-triazine structural motifs show antioxidant, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitory profile’, J. Enzyme Inhib. Med. Chem. 2020, 35, 424-431.
N. Lolak, M. Tuneg, A. Dogan, M. Boga, S. Akocak, ‘Synthesis and biological evaluation of 1,3,5-triazine-substituted ureido benzenesulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors’, Bioorg. Med. Chem. Rep. 2020, 3, 22-31.
V. Roig-Zamboni, B. Cobucci-Ponzano, R. Iacono, M. C. Ferrara, S. Germany, Y. Bourne, G. Parenti, M. Moracci, G. Sulzenbacher, ‘Structure of human lysosomal acid α-glucosidase - a guide for the treatment of Pompe disease’, Nat. Commun. 2017, 8, 1-10.
M. C. Franklin, M. J. Rudolph, C. Ginter, M. S. Cassidy, J. Cheung, ‘Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface’, Proteins Struct. Funct. Bioinf. 2016, 84, 1246-1256.
F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.-Y. Renard, ‘Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase’, Biochem. J. 2013, 453, 393-399.
C. Türkeş, Ş. Beydemir, Ö. İ. Küfrevioğlu, ‘In vitro and in silico studies on the toxic effects of antibacterial drugs as human serum paraoxonase 1 inhibitor’, ChemistrySelect 2019, 4, 9731-9736.
G. L. Ellman, K. D. Courtney, V. Andres Jr., R. M. Featherstone, ‘A new and rapid colorimetric determination of acetylcholinesterase activity’, Biochem. Pharmacol. 1961, 7, 88-95.
M. Işık, Y. Demir, M. Durgun, C. Türkeş, A. Necip, Ş. Beydemir, ‘Molecular docking and investigation of 4-(benzylideneamino)- and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors’, Chem. Pap. 2020, 74, 1395-1405.
S. Gündoğdu, C. Türkeş, M. Arslan, Y. Demir, Ş. Beydemir, ‘New Isoindole-1,3-dione Substituted Sulfonamides as Potent Inhibitors of Carbonic Anhydrase and Acetylcholinesterase: Design, Synthesis, and Biological Evaluation’, ChemistrySelect 2019, 4, 13347-13355.
Y. Demir, M. Işık, İ. Gülçin, Ş. Beydemir, ‘Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney’, J. Biochem. Mol. Toxicol. 2017, 31, e21936.
Y. Akbaba, C. Türkeş, L. Polat, H. Söyüt, E. Şahin, A. Menzek, S. Göksu, Ş. Beydemir, ‘Synthesis and paraoxonase activities of novel bromophenols’, J. Enzyme Inhib. Med. Chem. 2013, 28, 1073-1079.
C. Türkeş, H. Söyüt, Ş. Beydemir, ‘Inhibition Effects of Gemcitabine Hydrochloride, Acyclovir, and 5-Fluorouracil on Human Serum Paraoxonase-1 (hPON1): In Vitro’, Open J. Biochem. 2013, 1, 10-15.
C. Türkeş, Y. Demir, Ş. Beydemir, ‘Anti-diabetic properties of calcium channel blockers: inhibition effects on aldose reductase enzyme activity’, Appl. Biochem. Biotechnol. 2019, 189, 318-329.
C. Türkeş, H. Söyüt, Ş. Beydemir, ‘Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress’, Pharmacol. Rep. 2014, 66, 74-80.
C. Türkeş, H. Söyüt, Ş. Beydemir, ‘Human serum paraoxonase-1 (hPON1): in vitro inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihydrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium’, J. Enzyme Inhib. Med. Chem. 2015, 30, 622-628.
C. Türkeş, H. Söyüt, Ş. Beydemir, ‘In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum’, Environ. Toxicol. Pharmacol. 2016, 42, 252-257.
C. Türkeş, M. Arslan, Y. Demir, L. Cocaj, A. R. Nixha, Ş. Beydemir, ‘Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors’, Bioorg. Chem. 2019, 89, 103004.
B. Sever, C. Türkeş, M. D. Altıntop, Y. Demir, Ş. Beydemir, ‘Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors’, Int. J. Biol. Macromol. 2020, 163, 1970-1988.
M. Kalaycı, C. Türkeş, M. Arslan, Y. Demir, Ş. Beydemir, ‘Novel benzoic acid derivatives: Synthesis and biological evaluation as multi-target acetylcholinesterase and carbonic anhydrase inhibitors’, Arch. Pharm. 2020, e2000282.
Y. Demir, C. Türkeş, Ş. Beydemir, ‘Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I’, Anti-Cancer Agents Med. Chem. 2020, 20, 887-896.
C. Türkeş, ‘Inhibition effects of phenolic compounds on human serum paraoxonase-1 enzyme’, J. Inst. Sci. Technol. 2019, 9, 1013-1022.
M. Işık, Ş. Beydemir, Y. Demir, M. Durgun, C. Türkeş, A. Nasır, A. Necip, M. Akkuş, ‘Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies’, Int. J. Biol. Macromol. 2020, 146, 1111-1123.
Q. Istrefi, C. Türkeş, M. Arslan, Y. Demir, A. R. Nixha, Ş. Beydemir, Ö. İ. Küfrevioğlu, ‘Sulfonamides incorporating ketene N,S-acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors’, Arch. Pharm. 2020, 353, e1900383.
C. Türkeş, ‘Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs’, Protein Pept. Lett. 2019, 26, 392-402.
Ş. Beydemir, C. Türkeş, A. Yalçın, ‘Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies’, Drug Chem. Toxicol. 2019, 1-10.
C. Türkeş, Ş. Beydemir, ‘Inhibition of human serum paraoxonase-I with antimycotic drugs: in vitro and in silico studies’, Appl. Biochem. Biotechnol. 2020, 190, 252-269.
C. Türkeş, Y. Demir, Ş. Beydemir, ‘Some calcium-channel blockers: kinetic and in silico studies on paraoxonase-I’, J. Biomol. Struct. Dyn. 2020, 1-9. DOI: 10.1080/07391102.2020.1806927.
C. Türkeş, Y. Demir, Ş. Beydemir, ‘Calcium Channel Blockers: Molecular Docking and Inhibition Studies on Carbonic Anhydrase I and II Isoenzymes’, J. Biomol. Struct. Dyn. 2020, 1-15. DOI: 10.1080/07391102.2020.1736631.
C. Türkeş, ‘A potential risk factor for paraoxonase 1: in silico and in vitro analysis of the biological activity of proton-pump inhibitors’, J. Pharm. Pharmacol. 2019, 71, 1553-1564.
A. Kilic, L. Beyazsakal, M. Işık, C. Türkeş, A. Necip, K. Takım, Ş. Beydemir, ‘Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: synthesis, spectroscopy and in vitro/in silico biological studies’, J. Organomet. Chem. 2020, 927, 121542.
S. Akocak, O. Guzel-Akdemir, R. K. K. Sanku, S. S. Russom, B. I. Iorga, C. T. Supuran, M. A. Ilies, ‘Pyridinium derivatives of 3-aminobenzenesulfonamide are nanomolar-potent inhibitors of tumor-expressed carbonic anhydrase isozymes CA IX and CA XII’, Bioorg. Chem. 2020, 103, 104204.
J. T. Andring, M. Fouch, S. Akocak, A. Angeli, C. T. Supuran, M. A. Ilies, R. McKenna, ‘Structural Basis of Nanomolar Inhibition of Tumor-Associated Carbonic Anhydrase IX: X-Ray Crystallographic and Inhibition Study of Lipophilic Inhibitors with Acetazolamide Backbone’, J. Med. Chem. 2020, 63, 13064-13075.
معلومات مُعتمدة: 1610S681 Research Fund of Anadolu University
فهرسة مساهمة: Keywords: acetylcholinesterase; butyrylcholinesterase; in silico study; sulfaguanidine; α-glycosidase
المشرفين على المادة: 0 (Cholinesterase Inhibitors)
0 (Glycoside Hydrolase Inhibitors)
0 (Hypoglycemic Agents)
0 (Neuroprotective Agents)
15XQ8043FN (Sulfaguanidine)
EC 3.1.1.7 (Acetylcholinesterase)
EC 3.1.1.8 (Butyrylcholinesterase)
EC 3.2.1.20 (alpha-Glucosidases)
تواريخ الأحداث: Date Created: 20210223 Date Completed: 20210726 Latest Revision: 20210726
رمز التحديث: 20240628
DOI: 10.1002/cbdv.202000958
PMID: 33620128
قاعدة البيانات: MEDLINE
الوصف
تدمد:1612-1880
DOI:10.1002/cbdv.202000958