دورية أكاديمية

Emerging evidence that adaptive bone formation inhibition by non-steroidal anti-inflammatory drugs increases stress fracture risk.

التفاصيل البيبلوغرافية
العنوان: Emerging evidence that adaptive bone formation inhibition by non-steroidal anti-inflammatory drugs increases stress fracture risk.
المؤلفون: Staab JS; Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA., Kolb AL; Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA., Tomlinson RE; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA., Pajevic PD; Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA., Matheny RW Jr; Military Operational Medicine Research Program, Fort Detrick, MD 21702, USA., Hughes JM; Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.
المصدر: Experimental biology and medicine (Maywood, N.J.) [Exp Biol Med (Maywood)] 2021 May; Vol. 246 (9), pp. 1104-1111. Date of Electronic Publication: 2021 Feb 27.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Review
اللغة: English
بيانات الدورية: Publisher: Frontiers Media S.A Country of Publication: England NLM ID: 100973463 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1535-3699 (Electronic) Linking ISSN: 15353699 NLM ISO Abbreviation: Exp Biol Med (Maywood) Subsets: MEDLINE
أسماء مطبوعة: Publication: 2024- : Lausanne, Switzerland : Frontiers Media S.A.
Original Publication: Maywood, NJ : The Society, c2001-
مواضيع طبية MeSH: Fractures, Stress*/chemically induced , Fractures, Stress*/physiopathology, Anti-Inflammatory Agents, Non-Steroidal/*adverse effects , Bone Remodeling/*drug effects , Osteogenesis/*drug effects, Animals ; Humans
مستخلص: There is mounting evidence suggesting that the commonly used analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), may inhibit new bone formation with physical training and increase risk of stress fractures in physically active populations. Stress fractures are thought to occur when bones are subjected to repetitive mechanical loading, which can lead to a cycle of tissue microdamage, repair, and continued mechanical loading until fracture. Adaptive bone formation, particularly on the periosteal surface of long bones, is a concurrent adaptive response of bone to heightened mechanical loading that can improve the fatigue resistance of the skeletal structure, and therefore may play a critical role in offsetting the risk of stress fracture. Reports from animal studies suggest that NSAID administration may suppress this important adaptive response to mechanical loading. These observations have implications for populations such as endurance athletes and military recruits who are at risk of stress fracture and whose use of NSAIDs is widespread. However, results from human trials evaluating exercise and bone adaptation with NSAID consumption have been less conclusive. In this review, we identify knowledge gaps that must be addressed to further support NSAID-related guidelines intended for at-risk populations and individuals.
References: Exerc Sport Sci Rev. 2020 Jul;48(3):140-148. (PMID: 32568926)
Osteoporos Int. 2013 Jan;24(1):383-8. (PMID: 22349912)
Orthop Nurs. 2020 Nov/Dec;39(6):408-413. (PMID: 33234913)
Life Sci. 2015 Feb 15;123:72-7. (PMID: 25625244)
Bone. 2019 Jul;124:22-32. (PMID: 30998998)
J Orthop Res. 2001 Sep;19(5):919-26. (PMID: 11562142)
J Musculoskelet Neuronal Interact. 2009 Jan-Mar;9(1):44-52. (PMID: 19240368)
Exp Biol Med (Maywood). 2017 May;242(9):897-906. (PMID: 27496801)
Int J Sports Med. 2012 Nov;33(11):940-6. (PMID: 22821178)
J Bone Miner Res. 2003 Oct;18(10):1795-802. (PMID: 14584890)
J Bone Joint Surg Br. 2004 Apr;86(3):444-9. (PMID: 15125136)
ScientificWorldJournal. 2013 Sep 19;2013:809891. (PMID: 24170983)
Calcif Tissue Int. 1989 Jul;45(1):34-40. (PMID: 2504461)
J Am Acad Orthop Surg. 2019 Apr 1;27(7):e330-e336. (PMID: 30260913)
Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7563-8. (PMID: 10377455)
Med Hypotheses. 2013 Aug;81(2):343-6. (PMID: 23680000)
Acta Orthop Scand. 1979 Dec;50(6 Pt 1):621-7. (PMID: 532589)
J Bone Miner Res. 2017 Jul;32(7):1546-1553. (PMID: 28300324)
Bone. 2000 Sep;27(3):437-44. (PMID: 10962357)
Eur J Pharmacol. 2007 Oct 31;572(2-3):102-10. (PMID: 17632097)
Mil Med. 2011 Apr;176(4):420-30. (PMID: 21539165)
Drug Des Devel Ther. 2018 Jun 21;12:1809-1814. (PMID: 29950815)
J Bone Miner Res. 1996 Nov;11(11):1688-93. (PMID: 8915776)
Life Sci. 2018 Sep 1;208:10-19. (PMID: 29990484)
Int J Implant Dent. 2018 Oct 9;4(1):30. (PMID: 30298361)
J Rheumatol. 1997 Jun;24(6):1132-6. (PMID: 9195522)
J Bone Miner Res. 1998 Dec;13(12):1924-31. (PMID: 9844111)
Bone Rep. 2016 Apr 28;5:96-103. (PMID: 28326351)
J Bone Miner Res. 2010 Jun;25(6):1415-22. (PMID: 20200939)
Acta Orthop Scand. 1990 Feb;61(1):66-9. (PMID: 2336956)
Bone. 2000 Oct;27(4):563-8. (PMID: 11033453)
Bone. 2002 Jan;30(1):2-4. (PMID: 11792556)
Am J Sports Med. 1996 Mar-Apr;24(2):211-7. (PMID: 8775123)
Mil Med. 2017 Mar;182(3):e1709-e1712. (PMID: 28290947)
Toxicology. 2009 Apr 28;258(2-3):148-56. (PMID: 19428934)
Med Sci Sports Exerc. 2006 Sep;38(9):1571-7. (PMID: 16960517)
Epidemiol Rev. 2002;24(2):228-47. (PMID: 12762095)
Curr Opin Rheumatol. 2013 Jul;25(4):524-31. (PMID: 23680778)
Cell Biosci. 2019 Dec 23;9:103. (PMID: 31890152)
Pharmacoepidemiol Drug Saf. 2014 Jan;23(1):43-50. (PMID: 23723142)
J Musculoskelet Neuronal Interact. 2014 Mar;14(1):78-94. (PMID: 24583543)
Clin Exp Pharmacol Physiol. 2018 Jan;45(1):75-83. (PMID: 28815657)
MSMR. 2020 Feb;27(2):18-25. (PMID: 32105494)
Calcif Tissue Int. 2007 Mar;80(3):176-83. (PMID: 17334881)
Bone. 2016 Jul;88:13-19. (PMID: 27046087)
J Bone Miner Res. 2005 May;20(5):809-16. (PMID: 15824854)
Arch Oral Biol. 2011 Apr;56(4):317-23. (PMID: 21112046)
Curr Osteoporos Rep. 2006 Sep;4(3):103-9. (PMID: 16907999)
Am J Sports Med. 2006 Jan;34(1):108-15. (PMID: 16170040)
Am J Physiol. 1994 Aug;267(2 Pt 1):E287-92. (PMID: 8074209)
Acta Pharmacol Sin. 2010 Nov;31(11):1495-9. (PMID: 21052086)
Med Sci Sports Exerc. 2017 May;49(5):888-895. (PMID: 28079706)
Bone. 2004 Sep;35(3):806-16. (PMID: 15336620)
Bone. 1998 Sep;23(3):275-81. (PMID: 9737350)
Phys Sportsmed. 2010 Apr;38(1):132-8. (PMID: 20424410)
Med Sci Sports Exerc. 2017 Apr;49(4):633-640. (PMID: 27875501)
Bone. 2018 Aug;113:9-16. (PMID: 29709620)
J Bone Miner Res. 2019 Mar;34(3):429-436. (PMID: 30352135)
Calcif Tissue Int. 2002 Apr;70(4):320-9. (PMID: 12004337)
Rev Endocr Metab Disord. 2010 Dec;11(4):219-27. (PMID: 21188536)
Bone Rep. 2015 Jan 1;1:1-8. (PMID: 25642444)
Curr Osteoporos Rep. 2017 Aug;15(4):318-325. (PMID: 28612339)
Prostaglandins Leukot Essent Fatty Acids. 1990 Nov;41(3):139-49. (PMID: 2281118)
Inflammopharmacology. 2015 Dec;23(6):319-27. (PMID: 26289996)
J Bone Miner Res. 1996 Jan;11(1):29-35. (PMID: 8770694)
Am J Sports Med. 1993 Sep-Oct;21(5):705-10. (PMID: 8238712)
فهرسة مساهمة: Keywords: Non-steroidal anti-inflammatory drugs; bone; cyclooxygenase; mechanical loading; prostaglandins; stress fracture
المشرفين على المادة: 0 (Anti-Inflammatory Agents, Non-Steroidal)
تواريخ الأحداث: Date Created: 20210301 Date Completed: 20211007 Latest Revision: 20220503
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8113733
DOI: 10.1177/1535370221993098
PMID: 33641442
قاعدة البيانات: MEDLINE
الوصف
تدمد:1535-3699
DOI:10.1177/1535370221993098