دورية أكاديمية

Magnetic resonance spectroscopy brain metabolites at term and 3-year neurodevelopmental outcomes in very preterm infants.

التفاصيل البيبلوغرافية
العنوان: Magnetic resonance spectroscopy brain metabolites at term and 3-year neurodevelopmental outcomes in very preterm infants.
المؤلفون: Illapani VSP; Division of Neonatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA., Edmondson DA; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA., Cecil KM; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA., Altaye M; Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA., Kumar M; Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India., Harpster K; Division of Occupational Therapy and Physical Therapy, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA., Parikh NA; Division of Neonatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. Nehal.Parikh@cchmc.org.; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. Nehal.Parikh@cchmc.org.
المصدر: Pediatric research [Pediatr Res] 2022 Jul; Vol. 92 (1), pp. 299-306. Date of Electronic Publication: 2021 Mar 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 0100714 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1530-0447 (Electronic) Linking ISSN: 00313998 NLM ISO Abbreviation: Pediatr Res Subsets: MEDLINE
أسماء مطبوعة: Publication: 2012- : New York : Nature Publishing Group
Original Publication: Basel ; New York : Karger.
مواضيع طبية MeSH: Creatine*/metabolism , Infant, Premature, Diseases*/pathology, Brain ; Child, Preschool ; Choline ; Female ; Fetal Growth Retardation/metabolism ; Humans ; Infant ; Infant, Newborn ; Infant, Premature ; Magnetic Resonance Spectroscopy ; Prospective Studies
مستخلص: Background: Noninvasive advanced neuroimaging and neurochemical assessment can identify subtle abnormalities and predict neurodevelopmental impairments. Our objective was to quantify white matter metabolite levels and evaluate their relationship with neurodevelopmental outcomes at age 3 years.
Methods: Our study evaluated a longitudinal prospective cohort of very premature infants (<32 weeks gestational age) with single-voxel proton magnetic resonance spectroscopy from the centrum semiovale performed at term-equivalent age and standardized cognitive, verbal, and motor assessments at 3 years corrected age. We separately examined metabolite ratios in the left and right centrum semiovale. We also conducted an exploratory interaction analysis for high/low socioeconomic status (SES) to evaluate the relationship between metabolites and neurodevelopmental outcomes, after adjusting for confounders.
Results: We found significant relationships between choline/creatine levels in the left and right centrum semiovale and motor development scores. Exploratory interaction analyses revealed that, for infants with low SES, there was a negative association between choline/creatine in the left centrum semiovale and motor assessment scores at age 3 years.
Conclusions: Brain metabolites from the centrum semiovale at term-equivalent age were associated with motor outcomes for very preterm infants at 3 years corrected age. This effect may be most pronounced for infants with low SES.
Impact: Motor development at 3 years corrected age for very preterm infants is inversely associated with choline neurochemistry within the centrum semiovale on magnetic resonance spectroscopy at term-equivalent age, especially in infants with low socioeconomic status. No prior studies have studied metabolites in the centrum semiovale to predict neurodevelopmental outcomes at 3 years corrected age based on high/low socioeconomic status. For very preterm infants with lower socioeconomic status, higher choline-to-creatine ratio in central white matter is associated with worse neurodevelopmental outcomes.
(© 2021. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.)
References: Blencowe, H. et al. Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr. Res. 74(Suppl 1), 17–34 (2013). (PMID: 24366461387371010.1038/pr.2013.204)
Saigal, S. & Doyle, L. W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371, 261–269 (2008). (PMID: 1820702010.1016/S0140-6736(08)60136-1)
Allen, M. C. Neurodevelopmental outcomes of preterm infants. Curr. Opin. Neurol. 21, 123–128 (2008). (PMID: 1831726810.1097/WCO.0b013e3282f88bb4)
Duncan, A. F. & Matthews, M. A. Neurodevelopmental outcomes in early childhood. Clin. Perinatol. 45, 377–392 (2018). (PMID: 3014484410.1016/j.clp.2018.05.001)
Volpe, J. J. Cerebral white matter injury of the premature infant-more common than you think. Pediatrics 112, 176–180 (2003). (PMID: 1283788310.1542/peds.112.1.176)
Anderson, N. G. et al. Growth rate of corpus callosum in very premature infants. AJNR Am. J. Neuroradiol. 26, 2685–2690 (2005). (PMID: 162864237976183)
Woodward, L. J., Edgin, J. O., Thompson, D. & Inder, T. E. Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain 128, 2578–2587 (2005). (PMID: 1615085010.1093/brain/awh618)
Tamm, L. et al. Early brain abnormalities in infants born very preterm predict under-reactive temperament. Early Hum. Dev. 144, 104985 (2020). (PMID: 32163848757707410.1016/j.earlhumdev.2020.104985)
Gozdas, E. et al. Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments? Brain Struct. Funct. 223, 3665–3680 (2018).
Anderson, P. J., Cheong, J. L. & Thompson, D. K. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin. Perinatol. 39, 147–158 (2015). (PMID: 2572479210.1053/j.semperi.2015.01.008)
Parikh, N. A. Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Semin. Perinatol. 40, 530–541 (2016). (PMID: 27863706595139810.1053/j.semperi.2016.09.005)
Card, D. et al. Brain metabolite concentrations are associated with illness severity scores and white matter abnormalities in very preterm infants. Pediatr. Res. 74, 75–81 (2013). (PMID: 23575877496526610.1038/pr.2013.62)
Bapat, R., Narayana, P. A., Zhou, Y. & Parikh, N. A. Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: association with cognitive and language development. Pediatr. Neurol. 51, 53–59 (2014). (PMID: 24938140594289210.1016/j.pediatrneurol.2014.03.011)
Penrice, J. et al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr. Res. 40, 6–14 (1996). (PMID: 879823810.1203/00006450-199607000-00002)
Bluml, S. et al. Metabolic maturation of white matter is altered in preterm infants. PLoS ONE 9, e85829 (2014). (PMID: 24465731389907510.1371/journal.pone.0085829)
Hyodo, R. et al. Magnetic resonance spectroscopy in preterm infants: association with neurodevelopmental outcomes. Arch. Dis. Child. Fetal Neonatal Ed. 103, F238–F244 (2018). (PMID: 2872454510.1136/archdischild-2016-311403)
Kendall, G. S. et al. White matter NAA/Cho and Cho/Cr ratios at MR spectroscopy are predictive of motor outcome in preterm infants. Radiology 271, 230–238 (2014). (PMID: 2447579810.1148/radiol.13122679)
Huppi, P. S. et al. Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr. Res. 30, 574–578 (1991). (PMID: 166667010.1203/00006450-199112000-00017)
Van Kooij, B. J. et al. Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev. Med. Child Neurol. 54, 260–266 (2012). (PMID: 2221136310.1111/j.1469-8749.2011.04168.x)
Taylor, M. J. et al. Magnetic resonance spectroscopy in very preterm-born children at 4 years of age: developmental course from birth and outcomes. Neuroradiology 60, 1063–1073 (2018). (PMID: 3010562210.1007/s00234-018-2064-7)
Parikh, N. A. et al. Novel diffuse white matter abnormality biomarker at term-equivalent age enhances prediction of long-term motor development in very preterm children. Sci. Rep. 10, 15920 (2020). (PMID: 32985533752301210.1038/s41598-020-72632-0)
Counsell, S. J. et al. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117, 376–386 (2006). (PMID: 1645235610.1542/peds.2005-0820)
Wisnowski, J. L. et al. Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants. PLoS ONE 8, e56880 (2013). (PMID: 23468888358263110.1371/journal.pone.0056880)
Parikh, N. A., Pierson, C. R. & Rusin, J. A. Neuropathology associated with diffuse excessive high signal intensity abnormalities on magnetic resonance imaging in very preterm infants. Pediatr. Neurol. 65, 78–85 (2016). (PMID: 2756728910.1016/j.pediatrneurol.2016.07.006)
Slaughter, L. A. et al. Early conventional MRI for prediction of neurodevelopmental impairment in extremely-low-birth-weight infants. Neonatology 110, 47–54 (2016). (PMID: 2705073510.1159/000444179)
Kidokoro, H., Neil, J. J. & Inder, T. E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am. J. Neuroradiol. 34, 2208–2214 (2013). (PMID: 23620070416369810.3174/ajnr.A3521)
Parikh, N. A. et al. Objectively diagnosed diffuse white matter abnormality at term is an independent predictor of cognitive and language outcomes in infants born very preterm. J. Pediatr. 220, 56–63 (2020). (PMID: 32147220758365210.1016/j.jpeds.2020.01.034)
Provencher, S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679 (1993). (PMID: 813944810.1002/mrm.1910300604)
Jiru, F. et al. Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds. MAGMA 19, 1–14 (2006). (PMID: 1641632410.1007/s10334-005-0018-7)
Wilson, M. et al. A comparison between simulated and experimental basis sets for assessing short-TE in vivo (1)H MRS data at 1.5 T. NMR Biomed. 23, 1117–1126 (2010). (PMID: 2095419810.1002/nbm.1538)
Farah, M. J. The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron 96, 56–71 (2017). (PMID: 2895767610.1016/j.neuron.2017.08.034)
Farah, M. J. et al. Childhood poverty: specific associations with neurocognitive development. Brain Res. 1110, 166–174 (2006). (PMID: 1687980910.1016/j.brainres.2006.06.072)
Augustine, E. M. et al. Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants? J. Perinatol. 28, 611–618 (2008). (PMID: 18615089284476410.1038/jp.2008.66)
Chau, V. et al. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 81, 2082–2089 (2013). (PMID: 24212394386334810.1212/01.wnl.0000437298.43688.b9)
Degnan, A. J. et al. Early metabolic development of posteromedial cortex and thalamus in humans analyzed via in vivo quantitative magnetic resonance spectroscopy. J. Comp. Neurol. 522, 3717–3732 (2014). (PMID: 24888973419361210.1002/cne.23634)
Girard, N. et al. Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn. Reson. Med. 56, 768–775 (2006). (PMID: 1696461710.1002/mrm.21017)
Kimura, H. et al. Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy. Radiology 194, 483–489 (1995). (PMID: 752993410.1148/radiology.194.2.7529934)
Kok, R. D. et al. Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn. Reson. Med. 48, 611–616 (2002). (PMID: 1235327710.1002/mrm.10264)
Kreis, R. et al. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 48, 949–958 (2002). (PMID: 1246510310.1002/mrm.10304)
Limperopoulos, C. et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 121, 26–33 (2010). (PMID: 2002678310.1161/CIRCULATIONAHA.109.865568)
Roelants-van Rijn, A. M., Groenendaal, F., Stoutenbeek, P. & van der Grond, J. Lactate in the foetal brain: detection and implications. Acta Paediatr. 93, 937–940 (2004). (PMID: 1530380910.1111/j.1651-2227.2004.tb02692.x)
Simoes, R. V. et al. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome. Am. J. Obstet. Gynecol. 216, 62.e1–62.e14 (2017). (PMID: 10.1016/j.ajog.2016.09.089)
Vigneron, D. B. Magnetic resonance spectroscopic imaging of human brain development. Neuroimaging Clin. N. Am. 16, 75–85 (2006). (PMID: 1654308610.1016/j.nic.2005.11.008)
Xu, D. et al. MR spectroscopy of normative premature newborns. J. Magn. Reson. Imaging 33, 306–311 (2011). (PMID: 21274971339154010.1002/jmri.22460)
Xu, D. & Vigneron, D. Magnetic resonance spectroscopy imaging of the newborn brain-a technical review. Semin. Perinatol. 34, 20–27 (2010). (PMID: 20109969284201210.1053/j.semperi.2009.10.003)
Viola, A. et al. Is brain maturation comparable in fetuses and premature neonates at term equivalent age? AJNR Am. J. Neuroradiol. 32, 1451–1458 (2011). (PMID: 21757528796437310.3174/ajnr.A2555)
Heerschap, A., Kok, R. D. & van den Berg, P. P. Antenatal proton MR spectroscopy of the human brain in vivo. Childs Nerv. Syst. 19, 418–421 (2003). (PMID: 1281148410.1007/s00381-003-0774-5)
Cetin, I. et al. Lactate detection in the brain of growth-restricted fetuses with magnetic resonance spectroscopy. Am. J. Obstet. Gynecol. 205, 350.e1–350.e7 (2011). (PMID: 10.1016/j.ajog.2011.06.020)
Charles-Edwards, G. D. et al. Non-invasive detection and quantification of human foetal brain lactate in utero by magnetic resonance spectroscopy. Prenat. Diagn. 30, 260–266 (2010). (PMID: 2012000710.1002/pd.2463)
Kreis, R., Ernst, T. & Ross, B. D. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn. Reson. Med. 30, 424–437 (1993). (PMID: 825519010.1002/mrm.1910300405)
Pouwels, P. J. et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr. Res. 46, 474–485 (1999). (PMID: 1050937110.1203/00006450-199910000-00019)
Zhu, H. & Barker, P. B. MR spectroscopy and spectroscopic imaging of the brain. Methods Mol. Biol. 711, 203–226 (2011). (PMID: 21279603341602810.1007/978-1-61737-992-5_9)
Cohen, B. M. et al. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA 274, 902–907 (1995). (PMID: 767450510.1001/jama.1995.03530110064037)
Bluml, S., Seymour, K. J. & Ross, B. D. Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo human brain. Magn. Reson. Med. 42, 643–654 (1999). (PMID: 1050275210.1002/(SICI)1522-2594(199910)42:4<643::AID-MRM5>3.0.CO;2-N)
Miller, S. P. et al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr. Res. 52, 71–77 (2002). (PMID: 1208485010.1203/00006450-200207000-00014)
Hack, M., Klein, N. K. & Taylor, H. G. Long-term developmental outcomes of low birth weight infants. Future Child 5, 176–196 (1995). (PMID: 754335310.2307/1602514)
Doyle, L. W. et al. Biological and social influences on outcomes of extreme-preterm/low-birth weight adolescents. Pediatrics 136, e1513–e1520 (2015). (PMID: 2655318710.1542/peds.2015-2006)
Benavente-Fernandez, I., Siddiqi, A. & Miller, S. P. Socioeconomic status and brain injury in children born preterm: modifying neurodevelopmental outcome. Pediatr. Res. 87, 391–398 (2020). (PMID: 3166668910.1038/s41390-019-0646-7)
He, L. & Parikh, N. A. Aberrant executive and frontoparietal functional connectivity in very preterm infants with diffuse white matter abnormalities. Pediatr. Neurol. 53, 330–337 (2015). (PMID: 2621650210.1016/j.pediatrneurol.2015.05.001)
Wisnowski, J. L. et al. Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants. Neuroradiology 56, 771–779 (2014). (PMID: 24903580924258110.1007/s00234-014-1380-9)
معلومات مُعتمدة: R01 NS094200 United States NS NINDS NIH HHS; R01 ES026446 United States ES NIEHS NIH HHS; R21 HD094085 United States HD NICHD NIH HHS; R01 ES027224 United States ES NIEHS NIH HHS; R01 NS096037 United States NS NINDS NIH HHS; T32 ES010957 United States ES NIEHS NIH HHS
المشرفين على المادة: MU72812GK0 (Creatine)
N91BDP6H0X (Choline)
تواريخ الأحداث: Date Created: 20210303 Date Completed: 20220829 Latest Revision: 20230205
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8410891
DOI: 10.1038/s41390-021-01434-5
PMID: 33654289
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-0447
DOI:10.1038/s41390-021-01434-5