دورية أكاديمية

Beyond immune checkpoint blockade: emerging immunological strategies.

التفاصيل البيبلوغرافية
العنوان: Beyond immune checkpoint blockade: emerging immunological strategies.
المؤلفون: Kubli SP; Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada., Berger T; Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada., Araujo DV; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada., Siu LL; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada., Mak TW; Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. tmak@uhnres.utoronto.ca.; Department of Immunology, University of Toronto, Toronto, ON, Canada. tmak@uhnres.utoronto.ca.; Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong. tmak@uhnres.utoronto.ca.
المصدر: Nature reviews. Drug discovery [Nat Rev Drug Discov] 2021 Dec; Vol. 20 (12), pp. 899-919. Date of Electronic Publication: 2021 Mar 08.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101124171 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1474-1784 (Electronic) Linking ISSN: 14741776 NLM ISO Abbreviation: Nat Rev Drug Discov Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, [2002-
مواضيع طبية MeSH: Immune Checkpoint Inhibitors*/immunology , Immune Checkpoint Inhibitors*/pharmacology , Neoplasms*/drug therapy , Neoplasms*/immunology, Antineoplastic Agents/immunology ; Antineoplastic Agents/pharmacology ; Humans ; Immunotherapy/methods ; Immunotherapy/trends ; Tumor Microenvironment/drug effects ; Tumor Microenvironment/immunology
مستخلص: The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
(© 2021. Springer Nature Limited.)
References: Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013). (PMID: 2389005910.1016/j.immuni.2013.07.012)
Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015). (PMID: 25605845498057310.1200/JCO.2014.59.4358)
Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA 107, 4275–4280 (2010). (PMID: 20160101284009310.1073/pnas.0915174107)
Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013). (PMID: 23724867569800410.1056/NEJMoa1302369)
Hargadon, K. M., Johnson, C. E. & Williams, C. J. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62, 29–39 (2018). (PMID: 2999069210.1016/j.intimp.2018.06.001)
Tang, J., Pearce, L., O’Donnell-Tormey, J. & Hubbard-Lucey, V. M. Trends in the global immuno-oncology landscape. Nat. Rev. Drug Discov. 17, 783–784 (2018). (PMID: 3033772210.1038/nrd.2018.167)
CRI Anna-Maria Kellen Clinical Accelerator Team. PD-1/PD-L1 landscape. Cancer Research Institute https://www.cancerresearch.org/scientists/immuno-oncology-landscape/pd-1-pd-l1-landscape#landscape (2019).
Keenan, T. E., Burke, K. P. & Van Allen, E. M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25, 389–402 (2019). (PMID: 30842677659971010.1038/s41591-019-0382-x)
Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015). (PMID: 2583837310.1126/science.aaa8172)
Daud, A. I. et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447–3452 (2016). (PMID: 27525433500496510.1172/JCI87324)
Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017). (PMID: 28803728559107210.1016/j.cell.2017.07.024)
Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018). (PMID: 2930905910.1038/nm.4466)
Fehlings, M. et al. Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8 + T cells. Nat. Commun. 8, 562 (2017). (PMID: 28916749560192510.1038/s41467-017-00627-z)
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005). (PMID: 1577600510.1038/nrc1586)
Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012). (PMID: 22698407372151010.1016/j.ccr.2012.04.024)
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017). (PMID: 2805225410.1016/j.celrep.2016.12.019)
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005). (PMID: 1589426710.1016/j.ccr.2005.04.023)
Li, J. et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49, 178–193 (2018). (PMID: 29958801670772710.1016/j.immuni.2018.06.006)
Ruscetti, M. et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 181, 424–441 (2020). (PMID: 32234521727889710.1016/j.cell.2020.03.008)
Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997 (2018). (PMID: 30388455641037710.1016/j.cell.2018.09.006)
Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019). (PMID: 31827286710817110.1038/s41586-019-1836-5)
Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019). (PMID: 31048490668520710.1126/science.aau0447)
Salmon, H. et al. Expansion and activation of CD103 + dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016). (PMID: 27096321498076210.1016/j.immuni.2016.03.012)
Cooper, Z. A., Frederick, D. T., Ahmed, Z. & Wargo, J. A. Combining checkpoint inhibitors and BRAF-targeted agents against metastatic melanoma. Oncoimmunology 2, e24320 (2013). (PMID: 23762807366791310.4161/onci.24320)
Ascierto, P. A. et al. KEYNOTE-022 part 3: phase II randomized study of 1L dabrafenib (D) and trametinib (T) plus pembrolizumab (Pembro) or placebo (PBO) for BRAF-mutant advanced melanoma. Ann. Oncol. 29, viii442 (2018). (PMID: 10.1093/annonc/mdy289)
Ascierto, P. A. et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat. Med. 25, 941–946 (2019). (PMID: 3117187810.1038/s41591-019-0448-9)
Reddy, S. M., Reuben, A. & Wargo, J. A. Influences of BRAF inhibitors on the immune microenvironment and the rationale for combined molecular and immune targeted therapy. Curr. Oncol. Rep. 18, 42 (2016). (PMID: 27215436533038310.1007/s11912-016-0531-z)
Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099.e6 (2017). (PMID: 29246442574617010.1016/j.immuni.2017.11.016)
George, S. et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197–204 (2017). (PMID: 28228279540832010.1016/j.immuni.2017.02.001)
Shaked, Y. The pro-tumorigenic host response to cancer therapies. Nat. Rev. Cancer 19, 667–685 (2019). (PMID: 3164571110.1038/s41568-019-0209-6)
Lauss, M. et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8, 1738 (2017). (PMID: 29170503570104610.1038/s41467-017-01460-0)
Fellner, C. Ipilimumab (Yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. P. T. 37, 503–530 (2012). (PMID: 230663443462607)
Ribas, A. et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31, 616–622 (2013). (PMID: 23295794487804810.1200/JCO.2012.44.6112)
Rizvi, N. A. et al. Durvalumab with or without tremelimumab vs platinum-based chemotherapy as first-line treatment for metastatic non-small cell lung cancer: MYSTIC. Ann. Oncol. 28 (Suppl. 10), x39–x43 (2018).
Maio, M. et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 18, 1261–1273 (2017). (PMID: 2872915410.1016/S1470-2045(17)30446-1)
Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015). (PMID: 25918390443476010.1073/pnas.1417320112)
Furness, A. J., Vargas, F. A., Peggs, K. S. & Quezada, S. A. Impact of tumour microenvironment and Fc receptors on the activity of immunomodulatory antibodies. Trends Immunol. 35, 290–298 (2014). (PMID: 2495301210.1016/j.it.2014.05.002)
Kelley, R. K. et al. Efficacy, tolerability, and biologic activity of a novel regimen of tremelimumab (T) in combination with durvalumab (D) for patients (pts) with advanced hepatocellular carcinoma (aHCC). J. Clin. Oncol. 38, 4508 (2020). (PMID: 10.1200/JCO.2020.38.15_suppl.4508)
Mahoney, K. M., Freeman, G. J. & McDermott, D. F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther. 37, 764–782 (2015). (PMID: 25823918449795710.1016/j.clinthera.2015.02.018)
Burstein, H. J. et al. Clinical cancer advances 2017: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 35, 1341–1367 (2017). (PMID: 2814820710.1200/JCO.2016.71.5292)
Drugs.com. Yervoy FDA approval history. Drugs.com https://www.drugs.com/history/yervoy.html (2020).
Hodi, F. S. et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1480–1492 (2018). (PMID: 3036117010.1016/S1470-2045(18)30700-9)
Schmidt, C. The benefits of immunotherapy combinations. Nature 552, S67–S69 (2017). (PMID: 2929324510.1038/d41586-017-08702-7)
Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013). (PMID: 23897981375486310.1084/jem.20130579)
Emens, L. et al. Abstract PD3-01: Results from KATE2, a randomized phase 2 study of atezolizumab (atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in previously treated HER2+ advanced breast cancer (BC). Cancer Res. 79 (Suppl. 4), PD3-01 (2019). (PMID: 10.1158/1538-7445.SABCS18-PD3-01)
Olson, B., Li, Y., Lin, Y., Liu, E. T. & Patnaik, A. Mouse models for cancer immunotherapy research. Cancer Discov. 8, 1358–1365 (2018). (PMID: 30309862872560510.1158/2159-8290.CD-18-0044)
Buqué, A. & Galluzzi, L. Modeling tumor immunology and immunotherapy in mice. Trends Cancer 4, 599–601 (2018). (PMID: 3014987610.1016/j.trecan.2018.07.003)
Zia, M. I., Siu, L. L., Pond, G. R. & Chen, E. X. Comparison of outcomes of phase II studies and subsequent randomized control studies using identical chemotherapeutic regimens. J. Clin. Oncol. 23, 6982–6991 (2005). (PMID: 1619258510.1200/JCO.2005.06.679)
Bendell, J. C. et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). J. Clin. Oncol. 34, 3502 (2016). (PMID: 10.1200/JCO.2016.34.15_suppl.3502)
Hellmann, M. D. et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann. Oncol. 30, 1134–1142 (2019). (PMID: 30918950693123610.1093/annonc/mdz113)
Eng, C. et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 20, 849–861 (2019). (PMID: 3100391110.1016/S1470-2045(19)30027-0)
Mushti, S. L., Mulkey, F. & Sridhara, R. Evaluation of overall response rate and progression-free survival as potential surrogate endpoints for overall survival in immunotherapy trials. Clin. Cancer Res. 24, 2268–2275 (2018). (PMID: 2932628110.1158/1078-0432.CCR-17-1902)
Seruga, B., Ocana, A., Amir, E. & Tannock, I. F. Failures in phase III: causes and consequences. Clin. Cancer Res. 21, 4552–4560 (2015). (PMID: 2647319110.1158/1078-0432.CCR-15-0124)
Davis, A. A. & Patel, V. G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US food and drug administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 7, 278 (2019). (PMID: 31655605681503210.1186/s40425-019-0768-9)
Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020). (PMID: 3168255010.1200/JCO.19.02105)
Marabelle, A. et al. 1192O — association of tumour mutational burden with outcomes in patients with select advanced solid tumours treated with pembrolizumab in KEYNOTE-158. Ann. Oncol. 30, v477–v478 (2019). (PMID: 10.1093/annonc/mdz253.018)
Bellone, M. & Calcinotto, A. Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front. Oncol. 3, 231 (2013). (PMID: 24062984376963010.3389/fonc.2013.00231)
Beatty, G. L. & Moon, E. K. Chimeric antigen receptor T cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment. Oncoimmunology 3, e970027 (2014). (PMID: 25941599429254710.4161/21624011.2014.970027)
Sackstein, R., Schatton, T. & Barthel, S. R. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Invest. 97, 669–697 (2017). (PMID: 28346400544630010.1038/labinvest.2017.25)
Slaney, C. Y., Kershaw, M. H. & Darcy, P. K. Trafficking of T cells into tumors. Cancer Res. 74, 7168–7174 (2014). (PMID: 2547733210.1158/0008-5472.CAN-14-2458)
Lanitis, E., Dangaj, D., Irving, M. & Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 28, xii18–xii32 (2017). (PMID: 2904551110.1093/annonc/mdx238)
Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004). (PMID: 1513678710.1038/nrd1381)
Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015). (PMID: 25977340445241110.1158/0008-5472.CAN-15-0255)
Abastado, J. P. The next challenge in cancer immunotherapy: controlling T-cell traffic to the tumor. Cancer Res. 72, 2159–2161 (2012). (PMID: 2254994510.1158/0008-5472.CAN-11-3538)
Hindley, J. P. et al. T-cell trafficking facilitated by high endothelial venules is required for tumor control after regulatory T-cell depletion. Cancer Res. 72, 5473–5482 (2012). (PMID: 22962270349187210.1158/0008-5472.CAN-12-1912)
Lutsiak, M. E. et al. Inhibition of CD4 + 25 + T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105, 2862–2868 (2005). (PMID: 1559112110.1182/blood-2004-06-2410)
Demaria, S. et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin. Cancer Res. 7, 3025–3030 (2001). (PMID: 11595690)
Nardin, A. et al. Dacarbazine promotes stromal remodeling and lymphocyte infiltration in cutaneous melanoma lesions. J. Invest. Dermatol. 131, 1896–1905 (2011). (PMID: 2165483410.1038/jid.2011.128)
Maxwell, M. B. & Maher, K. E. Chemotherapy-induced myelosuppression. Semin. Oncol. Nurs. 8, 113–123 (1992). (PMID: 162100210.1016/0749-2081(92)90027-Z)
Javarappa, K. K., Tsallos, D. & Heckman, C. A. A multiplexed screening assay to evaluate chemotherapy-induced myelosuppression using healthy peripheral blood and bone marrow. SLAS Discov. 23, 687–696 (2018). (PMID: 2986591110.1177/2472555218777968)
Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124 (2008). (PMID: 18193223411097010.1007/s00262-007-0441-x)
Ohm, J. E. et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101, 4878–4886 (2003). (PMID: 1258663310.1182/blood-2002-07-1956)
Wallin, J. J. et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 7, 12624 (2016). (PMID: 27571927501361510.1038/ncomms12624)
Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018). (PMID: 2986395510.1056/NEJMoa1716948)
US Food and Drug Administration. FDA approves atezolizumab with chemotherapy and bevacizumab for first-line treatment of metastatic non-squamous NSCLC. FDA https://www.fda.gov/drugs/fda-approves-atezolizumab-chemotherapy-and-bevacizumab-first-line-treatment-metastatic-non-squamous (2018).
The ASCO Post. FDA grants breakthrough therapy designation for atezolizumab/bevacizumab combination as first-line treatment for advanced or metastatic HCC. ASCO Post https://www.ascopost.com/News/59089 (2018).
Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020). (PMID: 3240216010.1056/NEJMoa1915745)
US Food and Drug Administration. FDA approves atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma. FDA https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-plus-bevacizumab-unresectable-hepatocellular-carcinoma (2020).
Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019). (PMID: 3077952910.1056/NEJMoa1816714)
US Food and Drug Administration. FDA approves pembrolizumab plus axitinib for advanced renal cell carcinoma. FDA https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-plus-axitinib-advanced-renal-cell-carcinoma (2019).
Lanitis, E., Irving, M. & Coukos, G. Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol. 33, 55–63 (2015). (PMID: 25665467489692910.1016/j.coi.2015.01.011)
Reichetzeder, C., Tsuprykov, O. & Hocher, B. Endothelin receptor antagonists in clinical research — lessons learned from preclinical and clinical kidney studies. Life Sci. 118, 141–148 (2014). (PMID: 2460777410.1016/j.lfs.2014.02.025)
Kandalaft, L. E., Facciabene, A., Buckanovich, R. J. & Coukos, G. Endothelin B receptor, a new target in cancer immune therapy. Clin. Cancer Res. 15, 4521–4528 (2009). (PMID: 19567593289681410.1158/1078-0432.CCR-08-0543)
Ott, P. A., Hodi, F. S. & Buchbinder, E. I. Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front. Oncol. 5, 202 (2015). (PMID: 26442214458511210.3389/fonc.2015.00202)
Yang, B. et al. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm. 2014, 623759 (2014). (PMID: 25110397411969410.1155/2014/623759)
Deliyanti, D. et al. Foxp3 + Tregs are recruited to the retina to repair pathological angiogenesis. Nat. Commun. 8, 748 (2017). (PMID: 28963474562206610.1038/s41467-017-00751-w)
Leung, O. M. et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep. 24, 1610–1626 (2018). (PMID: 3008927010.1016/j.celrep.2018.07.019)
Lugade, A. A. et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 174, 7516–7523 (2005). (PMID: 1594425010.4049/jimmunol.174.12.7516)
Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017). (PMID: 28759889585735710.1038/nature23470)
Quezada, S. A. et al. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med. 205, 2125–2138 (2008). (PMID: 18725522252620610.1084/jem.20080099)
Peng, W. et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res. 72, 5209–5218 (2012). (PMID: 22915761347673410.1158/0008-5472.CAN-12-1187)
Hong, M. et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 71, 6997–7009 (2011). (PMID: 2194896910.1158/0008-5472.CAN-11-1466)
Muthuswamy, R. et al. NF-κB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res. 72, 3735–3743 (2012). (PMID: 22593190378056510.1158/0008-5472.CAN-11-4136)
Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8 + T-cell recruitment. Cancer Res. 69, 3077–3085 (2009). (PMID: 1929319010.1158/0008-5472.CAN-08-2281)
Mulligan, A. M. et al. Tumoral lymphocytic infiltration and expression of the chemokine CXCL10 in breast cancers from the Ontario Familial Breast Cancer Registry. Clin. Cancer Res. 19, 336–346 (2013). (PMID: 2321305810.1158/1078-0432.CCR-11-3314)
Kerkar, S. P. et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest. 121, 4746–4757 (2011). (PMID: 22056381322600110.1172/JCI58814)
Tsai, A. K. & Davila, E. Producer T cells: using genetically engineered T cells as vehicles to generate and deliver therapeutics to tumors. Oncoimmunology 5, e1122158 (2016). (PMID: 27467930491070410.1080/2162402X.2015.1122158)
Sasaki, K., Pardee, A. D., Okada, H. & Storkus, W. J. IL-4 inhibits VLA-4 expression on Tc1 cells resulting in poor tumor infiltration and reduced therapy benefit. Eur. J. Immunol. 38, 2865–2873 (2008). (PMID: 18958887277192610.1002/eji.200838334)
Nakayama, F. et al. Expression of cutaneous lymphocyte-associated antigen regulated by a set of glycosyltransferases in human T cells: involvement of α1, 3-fucosyltransferase VII and β1,4-galactosyltransferase I. J. Invest. Dermatol. 115, 299–306 (2000). (PMID: 1095125010.1046/j.1523-1747.2000.00032.x)
Hu, J. et al. T-cell homing therapy for reducing regulatory T cells and preserving effector T-cell function in large solid tumors. Clin. Cancer Res. 24, 2920–2934 (2018). (PMID: 29391351600422910.1158/1078-0432.CCR-17-1365)
Berraondo, P., Etxeberria, I., Ponz-Sarvise, M. & Melero, I. Revisiting interleukin-12 as a cancer immunotherapy agent. Clin. Cancer Res. 24, 2716–2718 (2018). (PMID: 2954916010.1158/1078-0432.CCR-18-0381)
Kershaw, M. H. et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther. 13, 1971–1980 (2002). (PMID: 1242730710.1089/10430340260355374)
Peng, W. et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res. 16, 5458–5468 (2010). (PMID: 20889916347670310.1158/1078-0432.CCR-10-0712)
Di Stasi, A. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113, 6392–6402 (2009). (PMID: 19377047271093210.1182/blood-2009-03-209650)
Olofsson, P. S. et al. Blood pressure regulation by CD4 + lymphocytes expressing choline acetyltransferase. Nat. Biotechnol. 34, 1066–1071 (2016). (PMID: 27617738551318210.1038/nbt.3663)
Cox, M. A. et al. Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science 363, 639–644 (2019). (PMID: 30733420718184510.1126/science.aau9072)
Pellegrini, M. et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat. Med. 15, 528–536 (2009). (PMID: 1939617410.1038/nm.1953)
Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015). (PMID: 26321679486436310.1016/j.cell.2015.08.016)
Wang, R. & Green, D. R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012). (PMID: 2299088810.1038/ni.2386)
Shimizu, T., Nomiyama, S., Hirata, F. & Hayaishi, O. Indoleamine 2,3-dioxygenase. Purification and some properties. J. Biol. Chem. 253, 4700–4706 (1978). (PMID: 2668710.1016/S0021-9258(17)30447-7)
Moon, Y. W., Hajjar, J., Hwu, P. & Naing, A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J. Immunother. Cancer 3, 51 (2015). (PMID: 26674411467870310.1186/s40425-015-0094-9)
Munn, D. H. & Mellor, A. L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007). (PMID: 17476344185725310.1172/JCI31178)
Weber, W. P. et al. Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8 + T cells induced by TCR triggering or homeostatic cytokines. Eur. J. Immunol. 36, 296–304 (2006). (PMID: 1638563010.1002/eji.200535616)
Prendergast, G. C. et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother. 63, 721–735 (2014). (PMID: 24711084438469610.1007/s00262-014-1549-4)
Long, G. V. et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. J. Clin. Oncol. 36, 108 (2018). (PMID: 10.1200/JCO.2018.36.15_suppl.108)
Li, H. et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 4346 (2019). (PMID: 31554815676117810.1038/s41467-019-12361-9)
Luke, J. et al. Interferon γ (IFN-γ) gene signature and tryptophan 2,3-dioxygenase 2 (TDO2) gene expression: a potential predictive composite biomarker for linrodostat mesylate (BMS-986205; indoleamine 2,3-dioxygenase 1 inhibitor [IDO1i]) + nivolumab (NIVO). Ann. Oncol. 30, v760–v796 (2019). (PMID: 10.1093/annonc/mdz268.001)
Bradley, L. M., Haynes, L. & Swain, S. L. IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol. 26, 172–176 (2005). (PMID: 1574586010.1016/j.it.2005.01.004)
Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016). (PMID: 27789795548479510.1126/science.aaf2807)
Shi, L. Z. et al. Interdependent IL-7 and IFN-γ signalling in T-cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy. Nat. Commun. 7, 12335 (2016). (PMID: 27498556497906710.1038/ncomms12335)
Pellegrini, M. et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144, 601–613 (2011). (PMID: 2129533710.1016/j.cell.2011.01.011)
Sportes, C. et al. Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin. Cancer Res. 16, 727–735 (2010). (PMID: 20068111280819510.1158/1078-0432.CCR-09-1303)
Tian, Y. & Zajac, A. J. IL-21 and T cell differentiation: consider the context. Trends Immunol. 37, 557–568 (2016). (PMID: 27389961496909810.1016/j.it.2016.06.001)
Pellegrini, M., Mak, T. W. & Ohashi, P. S. Fighting cancers from within: augmenting tumor immunity with cytokine therapy. Trends Pharmacol. Sci. 31, 356–363 (2010). (PMID: 2056168910.1016/j.tips.2010.05.003)
Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T H 17 cells. Nature 448, 484–487 (2007). (PMID: 17581588380502810.1038/nature05970)
Punt, S. et al. A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17+ cell frequency. Cancer Immunol. Immunother. 65, 393–403 (2016). (PMID: 26899388482641110.1007/s00262-016-1805-x)
Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009). (PMID: 19423777283001710.1126/science.1174182)
Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8 + T cells. Nat. Immunol. 15, 373–383 (2014). (PMID: 24584090400023710.1038/ni.2834)
Gu, Y. Z. et al. Forced co-expression of IL-21 and IL-7 in whole-cell cancer vaccines promotes antitumor immunity. Sci. Rep. 6, 32351 (2016). (PMID: 27571893500410610.1038/srep32351)
Sondergaard, H. et al. Intratumoral interleukin-21 increases antitumor immunity, tumor-infiltrating CD8 + T-cell density and activity, and enlarges draining lymph nodes. J. Immunother. 33, 236–249 (2010). (PMID: 2044534410.1097/CJI.0b013e3181c0c1cb)
Mittal, D. et al. Improved treatment of breast cancer with anti-HER2 therapy requires interleukin-21 signaling in CD8 + T cells. Cancer Res. 76, 264–274 (2016). (PMID: 2674452210.1158/0008-5472.CAN-15-1567)
Vallieres, F. & Girard, D. Mechanism involved in interleukin-21-induced phagocytosis in human monocytes and macrophages. Clin. Exp. Immunol. 187, 294–303 (2017). (PMID: 2777460610.1111/cei.12886)
Wan, C. K. et al. IL-21-mediated non-canonical pathway for IL-1β production in conventional dendritic cells. Nat. Commun. 6, 7988 (2015). (PMID: 2626925710.1038/ncomms8988)
Xue, L., Hickling, T., Song, R., Nowak, J. & Rup, B. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody. Clin. Exp. Immunol. 183, 102–113 (2016). (PMID: 2640044010.1111/cei.12711)
Vegran, F. et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of T H 9 cells. Nat. Immunol. 15, 758–766 (2014). (PMID: 2497381910.1038/ni.2925)
Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016). (PMID: 27521269511963210.1016/j.immuni.2016.07.011)
Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017). (PMID: 28514453569321910.1038/nature22367)
Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8 + tumor-infiltrating T cells. Proc. Natl Acad. Sci. USA 114, E2776–E2785 (2017). (PMID: 28283662538009410.1073/pnas.1620498114)
Im, S. J. et al. Defining CD8 + T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). (PMID: 27501248529718310.1038/nature19330)
Miller, B. C. et al. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019). (PMID: 30778252667365010.1038/s41590-019-0312-6)
Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019). (PMID: 3063523710.1016/j.immuni.2018.12.021)
Jadhav, R. R. et al. Epigenetic signature of PD-1 + TCF1 + CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019). (PMID: 31227606662883210.1073/pnas.1903520116)
Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019). (PMID: 31207604769899210.1038/s41586-019-1324-y)
Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016). (PMID: 27789799549758910.1126/science.aae0491)
Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017). (PMID: 28596308557614210.1126/science.aan6733)
Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018). (PMID: 29658845719368410.1056/NEJMoa1801946)
Sonugur, F. G. & Akbulut, H. The role of tumor microenvironment in genomic instability of malignant tumors. Front. Genet. 10, 1063 (2019). (PMID: 31737046682897710.3389/fgene.2019.01063)
Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010). (PMID: 2017739710.1038/nrm2858)
Thomas, R. et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front. Immunol. 9, 947 (2018). (PMID: 29770138594131710.3389/fimmu.2018.00947)
Whitehurst, A. W. Cause and consequence of cancer/testis antigen activation in cancer. Annu. Rev. Pharmacol. Toxicol. 54, 251–272 (2014). (PMID: 2416070610.1146/annurev-pharmtox-011112-140326)
Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017). (PMID: 28738408587083010.1038/nature23449)
Li, T. & Chen, Z. J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018). (PMID: 29622565594027010.1084/jem.20180139)
Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). (PMID: 25517615438488410.1016/j.immuni.2014.10.017)
Wang, H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017). (PMID: 28137885532099410.1073/pnas.1621363114)
Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015). (PMID: 25939063445818410.1038/nm.3838)
Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017). (PMID: 28676342558908710.1016/j.ymthe.2017.06.008)
Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017). (PMID: 28225754555861410.1038/nature21405)
D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259 T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018). (PMID: 29891538809207910.1158/2159-8290.CD-17-1417)
Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017). (PMID: 28389661542843910.1038/s41598-017-00462-8)
Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020). (PMID: 3202968710.1126/science.aba7365)
Crome, S. Q. et al. A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat. Med. 23, 368–375 (2017). (PMID: 28165478549799610.1038/nm.4278)
Schietinger, A., Delrow, J. J., Basom, R. S., Blattman, J. N. & Greenberg, P. D. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state. Science 335, 723–727 (2012). (PMID: 22267581375478910.1126/science.1214277)
Tsukamoto, H. et al. Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Cancer Res. 78, 5011–5022 (2018). (PMID: 2996725910.1158/0008-5472.CAN-18-0118)
Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018). (PMID: 29405201585897110.1038/nrclinonc.2018.8)
Stroud, C. R. et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J. Oncol. Pharm. Pract. 25, 551–557 (2019). (PMID: 2920793910.1177/1078155217745144)
Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010). (PMID: 20627072290537710.1016/j.devcel.2010.05.012)
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). (PMID: 2137623010.1016/j.cell.2011.02.013)
Godwin, J. W., Pinto, A. R. & Rosenthal, N. A. Macrophages are required for adult salamander limb regeneration. Proc. Natl Acad. Sci. USA 110, 9415–9420 (2013). (PMID: 23690624367745410.1073/pnas.1300290110)
Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 67, 5064–5066 (2007). (PMID: 1754558010.1158/0008-5472.CAN-07-0912)
Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014). (PMID: 24812208420473210.1126/science.1252510)
Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001). (PMID: 1112335310.4049/jimmunol.166.1.678)
Gonda, K. et al. Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer. Oncol. Lett. 14, 1766–1774 (2017). (PMID: 28789407552987510.3892/ol.2017.6305)
Hayashi, T. et al. Peripheral blood monocyte count reflecting tumor-infiltrating macrophages is a predictive factor of adverse pathology in radical prostatectomy specimens. Prostate 77, 1383–1388 (2017). (PMID: 2884557010.1002/pros.23398)
Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014). (PMID: 25035953413741010.1016/j.immuni.2014.06.010)
Pollard, J. W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009). (PMID: 19282852364886610.1038/nri2528)
Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6, 3282–3289 (2000). (PMID: 10955814)
Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008). (PMID: 1883273910.4049/jimmunol.181.8.5791)
Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4, e6562 (2009). (PMID: 19668347272181810.1371/journal.pone.0006562)
Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017). (PMID: 28117416548060010.1038/nrclinonc.2016.217)
Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008). (PMID: 1825659910.1038/nature06685)
Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014). (PMID: 25033907463821910.1038/nri3712)
Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014). (PMID: 2485458910.1038/nri3671)
Liu, Y. & Cao, X. The origin and function of tumor-associated macrophages. Cell Mol. Immunol. 12, 1–4 (2015). (PMID: 2522073310.1038/cmi.2014.83)
Serbina, N. V. & Pamer, E. G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006). (PMID: 1646273910.1038/ni1309)
Laoui, D., Van Overmeire, E., De Baetselier, P., Van Ginderachter, J. A. & Raes, G. Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front. Immunol. 5, 489 (2014). (PMID: 25339957418803510.3389/fimmu.2014.00489)
Webb, S. E., Pollard, J. W. & Jones, G. E. Direct observation and quantification of macrophage chemoattraction to the growth factor CSF-1. J. Cell Sci. 109, 793–803 (1996). (PMID: 871867110.1242/jcs.109.4.793)
Sasmono, R. T. et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101, 1155–1163 (2003). (PMID: 1239359910.1182/blood-2002-02-0569)
Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014). (PMID: 25082815418295010.1158/0008-5472.CAN-13-3723)
Ngambenjawong, C., Gustafson, H. H. & Pun, S. H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 114, 206–221 (2017). (PMID: 28449873558198710.1016/j.addr.2017.04.010)
Beck, A. H. et al. The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin. Cancer Res. 15, 778–787 (2009). (PMID: 19188147298769610.1158/1078-0432.CCR-08-1283)
Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017). (PMID: 28716061551448110.1186/s40425-017-0257-y)
Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation early phase clinical trials consortium phase II study. Neuro Oncol. 18, 557–564 (2016). (PMID: 2644925010.1093/neuonc/nov245)
Moskowitz, C. H. et al. CSF1R inhibition by PLX3397 in patients with relapsed or refractory Hodgkin lymphoma: results from a phase 2 single agent clinical trial. Blood 120, 1638–1638 (2012). (PMID: 10.1182/blood.V120.21.1638.1638)
Collin, M. & Bigley, V. Human dendritic cell subsets: an update. Immunology 154, 3–20 (2018). (PMID: 29313948590471410.1111/imm.12888)
Kubli, S. P. et al. Fcmr regulates mononuclear phagocyte control of anti-tumor immunity. Nat. Commun. 10, 2678 (2019). (PMID: 31213601658194310.1038/s41467-019-10619-w)
Lewis, C. E. & Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66, 605–612 (2006). (PMID: 1642398510.1158/0008-5472.CAN-05-4005)
Lyford-Pike, S. et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 73, 1733–1741 (2013). (PMID: 23288508360240610.1158/0008-5472.CAN-12-2384)
Yoon, K. W. Dead cell phagocytosis and innate immune checkpoint. BMB Rep. 50, 496–503 (2017). (PMID: 28768566568381810.5483/BMBRep.2017.50.10.147)
Lewis, C. E., Harney, A. S. & Pollard, J. W. The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30, 18–25 (2016). (PMID: 27411586502454310.1016/j.ccell.2016.05.017)
Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010). (PMID: 20371344499419010.1016/j.cell.2010.03.014)
Gronwall, C., Vas, J. & Silverman, G. J. Protective roles of natural IgM antibodies. Front. Immunol. 3, 66 (2012). (PMID: 22566947334195110.3389/fimmu.2012.00066)
Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997). (PMID: 938947410.1038/37022)
Voss, J. et al. Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death Differ. 24, 971–983 (2017). (PMID: 28157210544246610.1038/cdd.2016.132)
Ren, Y. et al. Apoptotic cells protect mice against lipopolysaccharide-induced shock. J. Immunol. 180, 4978–4985 (2008). (PMID: 1835422310.4049/jimmunol.180.7.4978)
Correa, M. et al. Transient inflammatory response induced by apoptotic cells is an important mediator of melanoma cell engraftment and growth. Int. J. Cancer 114, 356–363 (2005). (PMID: 1557337110.1002/ijc.20673)
Wermeling, F. et al. Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J. Exp. Med. 204, 2259–2265 (2007). (PMID: 17893199211844010.1084/jem.20070600)
Tao, H. et al. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J. Lipid Res. 56, 1449–1460 (2015). (PMID: 26059978451398610.1194/jlr.M056689)
Todt, J. C., Hu, B. & Curtis, J. L. The scavenger receptor SR-A I/II (CD204) signals via the receptor tyrosine kinase Mertk during apoptotic cell uptake by murine macrophages. J. Leukoc. Biol. 84, 510–518 (2008). (PMID: 18511575271880310.1189/jlb.0307135)
Greenberg, M. E. et al. Oxidized phosphatidylserine–CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med. 203, 2613–2625 (2006). (PMID: 17101731211816110.1084/jem.20060370)
Georgoudaki, A. M. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15, 2000–2011 (2016). (PMID: 2721076210.1016/j.celrep.2016.04.084)
Ferracini, M., Rios, F. J., Pecenin, M. & Jancar, S. Clearance of apoptotic cells by macrophages induces regulatory phenotype and involves stimulation of CD36 and platelet-activating factor receptor. Mediators Inflamm. 2013, 950273 (2013). (PMID: 24347838385456410.1155/2013/950273)
Ohtaki, Y. et al. Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J. Thorac. Oncol. 5, 1507–1515 (2010). (PMID: 2080234810.1097/JTO.0b013e3181eba692)
Cao, J. et al. Prognostic role of tumour-associated macrophages and macrophage scavenger receptor 1 in prostate cancer: a systematic review and meta-analysis. Oncotarget 8, 83261–83269 (2017). (PMID: 29137340566996610.18632/oncotarget.18743)
Reinhold, M. I. et al. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J. Cell Sci. 108, 3419–3425 (1995). (PMID: 858665410.1242/jcs.108.11.3419)
Murata, Y., Kotani, T., Ohnishi, H. & Matozaki, T. The CD47–SIRPα signalling system: its physiological roles and therapeutic application. J. Biochem. 155, 335–344 (2014). (PMID: 2462752510.1093/jb/mvu017)
Soto-Pantoja, D. R., Kaur, S. & Roberts, D. D. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit. Rev. Biochem. Mol. Biol. 50, 212–230 (2015). (PMID: 25708195482270810.3109/10409238.2015.1014024)
Brown, E., Hooper, L., Ho, T. & Gresham, H. Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J. Cell Biol. 111, 2785–2794 (1990). (PMID: 227708710.1083/jcb.111.6.2785)
Veillette, A. & Chen, J. SIRPα–CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 39, 173–184 (2018). (PMID: 2933699110.1016/j.it.2017.12.005)
Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000). (PMID: 1085622010.1126/science.288.5473.2051)
Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009). (PMID: 19632178277556410.1016/j.cell.2009.05.046)
Barclay, A. N. & Van den Berg, T. K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu. Rev. Immunol. 32, 25–50 (2014). (PMID: 2421531810.1146/annurev-immunol-032713-120142)
Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009). (PMID: 19632179272683710.1016/j.cell.2009.05.045)
Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010). (PMID: 20813259294334510.1016/j.cell.2010.07.044)
Willingham, S. B. et al. The CD47–signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012). (PMID: 22451913334004610.1073/pnas.1121623109)
Matlung, H. L., Szilagyi, K., Barclay, N. A. & van den Berg, T. K. The CD47–SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol. Rev. 276, 145–164 (2017). (PMID: 2825870310.1111/imr.12527)
Liu, J. et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE 10, e0137345 (2015). (PMID: 26390038457708110.1371/journal.pone.0137345)
Sikic, B. I. et al. A first-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 34, 3019–3019 (2016). (PMID: 10.1200/JCO.2016.34.15_suppl.3019)
Narla, R. K. et al. Abstract 4694: the humanized anti-CD47 monclonal antibody, CC-90002, has antitumor activity in vitro and in vivo. Cancer Res. 77 (Suppl. 13), 4694 (2017). (PMID: 10.1158/1538-7445.AM2017-4694)
Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018). (PMID: 30380386805863410.1056/NEJMoa1807315)
Kauder, S. E. et al. ALX148 is a high affinity Sirpα fusion protein that blocks CD47, enhances the activity of anti-cancer antibodies and checkpoint inhibitors, and has a favorable safety profile in preclinical models. Blood 130 (Suppl. 1), 112 (2017).
Lakhani, N. J. et al. A phase 1 study of ALX148, a CD47 blocker, alone and in combination with established anticancer antibodies in patients with advanced malignancy and non-Hodgkin lymphoma. J. Clin. Oncol. 36, 3068 (2018). (PMID: 10.1200/JCO.2018.36.15_suppl.3068)
Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011). (PMID: 2148179210.1016/j.ccr.2011.02.005)
Peterson, T. E. et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl Acad. Sci. USA 113, 4470–4475 (2016). (PMID: 27044097484344910.1073/pnas.1525349113)
Kloepper, J. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl Acad. Sci. USA 113, 4476–4481 (2016). (PMID: 27044098484347310.1073/pnas.1525360113)
Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006). (PMID: 1643920210.1016/j.cell.2006.01.007)
Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6, 1670–1690 (2014). (PMID: 25125485419056110.3390/cancers6031670)
Vinnakota, K. et al. M2-like macrophages induce colon cancer cell invasion via matrix metalloproteinases. J. Cell Physiol. 232, 3468–3480 (2017). (PMID: 2809835910.1002/jcp.25808)
Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013). (PMID: 23619691372545810.1038/nature12034)
De Palma, M. & Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23, 277–286 (2013). (PMID: 2351834710.1016/j.ccr.2013.02.013)
Alishekevitz, D. et al. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 17, 1344–1356 (2016). (PMID: 27783948509811710.1016/j.celrep.2016.09.083)
McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017). (PMID: 2818728410.1016/j.cell.2017.01.018)
Wang, X., Teng, F., Kong, L. & Yu, J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 9, 5023–5039 (2016). (PMID: 27574444499039110.2147/OTT.S105862)
Hicklin, D. J., Marincola, F. M. & Ferrone, S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol. Med. Today 5, 178–186 (1999). (PMID: 1020375110.1016/S1357-4310(99)01451-3)
Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030 (2018). (PMID: 30343900650122110.1016/j.cell.2018.09.030)
Siu, L. L. et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 5, 195–203 (2019). (PMID: 3038318410.1001/jamaoncol.2018.4628)
Licitra, L. F. et al. EAGLE: a phase 3, randomized, open-label study of durvalumab (D) with or without tremelimumab (T) in patients (pts) with recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). J. Clin. Oncol. 37, 6012 (2019). (PMID: 10.1200/JCO.2019.37.15_suppl.6012)
Rizvi, N. A. et al. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial. JAMA Oncol. 6, 661–674 (2020). (PMID: 32271377714655110.1001/jamaoncol.2020.0237)
Kowalski, D. M. et al. ARCTIC: durvalumab + tremelimumab and durvalumab monotherapy vs SoC in ≥ 3L advanced NSCLC treatment. Ann. Oncol. 29, viii493–viii494 (2018). (PMID: 10.1093/annonc/mdy292.001)
Planchard, D. et al. ARCTIC: durvalumab with or without tremelimumab as third-line or later treatment of metastatic non-small-cell lung cancer. Ann. Oncol. 31, 609–618 (2020). (PMID: 3220123410.1016/j.annonc.2020.02.006)
Bazhenova, L. et al. A phase III randomized study of nivolumab plus ipilimumab versus nivolumab for previously treated patients with stage IV squamous cell lung cancer and no matching biomarker (Lung-MAP Sub-Study S1400I, NCT02785952). J. Clin. Oncol. 37, 9014 (2019). (PMID: 10.1200/JCO.2019.37.15_suppl.9014)
Owonikoko, T. K. et al. Nivolumab (nivo) plus ipilimumab (ipi), nivo, or placebo (pbo) as maintenance therapy in patients (pts) with extensive disease small cell lung cancer (ED-SCLC) after first-line (1L) platinum-based chemotherapy (chemo): results from the double-blind, randomized phase III CheckMate 451 study. Ann. Oncol. 30 (Suppl. 2), ii77–ii80 (2019). (PMID: 10.1093/annonc/mdz094)
Arance, A. M. et al. Combination treatment with cobimetinib (C) and atezolizumab (A) vs pembrolizumab (P) in previously untreated patients (pts) with BRAFV600 wild type (wt) advanced melanoma: primary analysis from the phase 3 IMspire170 trial. Ann. Oncol. 30, v851–v934 (2019). (PMID: 10.1093/annonc/mdz394.066)
Sanglier, T. et al. Use of trastuzumab emtansine (T-DM1; K) after pertuzumab + trastuzumab (PH) in patients with HER2-positive metastatic breast cancer (mBC): challenges in assessing effectiveness of treatment sequencing in the real world (RW). Ann. Oncol. 30, v104–v142 (2019). (PMID: 10.1093/annonc/mdz242.051)
O’Day, S. J., Hamid, O. & Urba, W. J. Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110, 2614–2627 (2007). (PMID: 1800099110.1002/cncr.23086)
Poust, J. Targeting metastatic melanoma. Am. J. Health Syst. Pharm. 65, S9–S15 (2008). (PMID: 1905226510.2146/ajhp080461)
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995). (PMID: 748180310.1126/science.270.5238.985)
Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004). (PMID: 1524068110.4049/jimmunol.173.2.945)
Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008). (PMID: 1817337510.1146/annurev.immunol.26.021607.090331)
Burnet, M. Cancer; a biological approach. I. The processes of control. Br. Med. J. 1, 779–786 (1957). (PMID: 13404306197317410.1136/bmj.1.5022.779)
Thomas, L. in Cellular and Humoral Aspects of the Hypersensitive States (ed. Lawrence, H. S.) 529–532 (Hoeber-Harper, 1959).
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011). (PMID: 2143644410.1126/science.1203486)
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992). (PMID: 154748710.1016/0092-8674(92)90029-C)
Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001). (PMID: 1132367510.1038/35074122)
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015). (PMID: 26205583488900910.1038/nri3862)
Paley, M. A. et al. Progenitor and terminal subsets of CD8 + T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012). (PMID: 23197535365376910.1126/science.1229620)
Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008). (PMID: 18809920256748510.1073/pnas.0801497105)
Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014). (PMID: 2445741710.1038/nrc3670)
Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012). (PMID: 2223762610.1158/0008-5472.CAN-11-3722)
Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012). (PMID: 22318521387480910.1038/nature10755)
Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005). (PMID: 1603436810.1038/nrc1669)
Leventhal, D. S. et al. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity 44, 847–859 (2016). (PMID: 27037189484225810.1016/j.immuni.2016.01.025)
المشرفين على المادة: 0 (Antineoplastic Agents)
0 (Immune Checkpoint Inhibitors)
تواريخ الأحداث: Date Created: 20210309 Date Completed: 20211222 Latest Revision: 20230130
رمز التحديث: 20240628
DOI: 10.1038/s41573-021-00155-y
PMID: 33686237
قاعدة البيانات: MEDLINE
الوصف
تدمد:1474-1784
DOI:10.1038/s41573-021-00155-y