دورية أكاديمية

Genetic basis of susceptibility to low-dose paraquat and variation between the sexes in Drosophila melanogaster.

التفاصيل البيبلوغرافية
العنوان: Genetic basis of susceptibility to low-dose paraquat and variation between the sexes in Drosophila melanogaster.
المؤلفون: Lovejoy PC; Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.; Department of Biology, St. Joseph's College, Brooklyn, NY, USA., Foley KE; Department of Biological Sciences, Binghamton University, Binghamton, NY, USA., Conti MM; Department of Psychology, Binghamton University, Binghamton, NY, USA., Meadows SM; Department of Psychology, Binghamton University, Binghamton, NY, USA., Bishop C; Department of Psychology, Binghamton University, Binghamton, NY, USA., Fiumera AC; Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
المصدر: Molecular ecology [Mol Ecol] 2021 May; Vol. 30 (9), pp. 2040-2053. Date of Electronic Publication: 2021 Mar 27.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Drosophila Proteins*/genetics , Drosophila melanogaster*/genetics, Animals ; Drosophila ; Female ; Genetic Variation ; Genome-Wide Association Study ; Male ; Paraquat/toxicity
مستخلص: Toxicant resistance is a complex trait, affected both by genetics and the environment. Like most complex traits, it can exhibit sexual dimorphism, yet sex is often overlooked as a factor in studies of toxicant resistance. Paraquat, one such toxicant, is a commonly used herbicide and is known to produce mitochondrial oxidative stress, decrease dopaminergic neurons and dopamine (DA) levels, and decrease motor ability. While the main effects of paraquat are well-characterized, less is known about the naturally occurring variation in paraquat susceptibility. The purpose of this study was to map the genes contributing to low-dose paraquat susceptibility in Drosophila melanogaster, and to determine if susceptibility differs between the sexes. One hundred of the Drosophila Genetic Reference Panel (DGRP) lines were scored for susceptibility via climbing ability and used in a genome-wide association study (GWAS). Variation in seventeen genes in females and thirty-five genes in males associated with paraquat susceptibility. Only two candidate genes overlapped between the sexes despite a significant positive correlation between male and female susceptibilities. Many associated polymorphisms had significant interactions with sex, with most having conditionally neutral effects. Conditional neutrality between the sexes probably stems from sex-biased expression which may result from partial resolution of sexual conflict. Candidate genes were verified with RNAi knockdowns, gene expression analyses, and DA quantification. Several of these genes are novel associations with paraquat susceptibility. This research highlights the importance of assessing both sexes when studying toxicant susceptibility.
(© 2021 John Wiley & Sons Ltd.)
References: Aleman, A., Kahn, R. S., & Selten, J. P. (2003). Sex differences in the risk of schizophrenia: Evidence from meta-analysis. Archives of General Psychiatry, 60(6), 565-571. https://doi.org/10.1001/archpsyc.60.6.565.
Andersen, K., Launer, L. J., Dewey, M. E., Letenneur, L., Ott, A., Copeland, J. R. M., Dartigues, J.-F., Kragh-Sorensen, P., Baldereschi, M., Brayne, C., Lobo, A., Martinez-Lage, J. M., Stijnen, T., & Hofman, A. (1999). Gender differences in the incidence of AD and vascular dementia: The EURODEM studies. EURODEM Incidence Research Group. Neurology, 53(9), 1992-1997.
Auluck, P. K., Chan, H. Y. E., Trojanowski, J. Q., Lee, V. M. Y., & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science, 295(5556), 865-868. https://doi.org/10.1126/science.1067389.
Barson, N. J., Aykanat, T., Hindar, K., Baranski, M., Bolstad, G. H., Fiske, P., Jacq, C., Jensen, A. J., Johnston, S. E., Karlsson, S., Kent, M., Moen, T., Niemelä, E., Nome, T., Naesje, T. F., Orell, P., Romakkaniemi, A., Saegrov, H., Urdal, K., … Primmer, C. R. (2015). Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature, 528(7582), 405-408. https://doi.org/10.1038/nature16062.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. ArXiv, 1406.5823 http://arxiv.org/abs/1406.5823.
Battlay, P., Leblanc, P. B., Green, L., Garud, N. R., Schmidt, J. M., Fournier-Level, A., & Robin, C. (2018). Structural variants and selective sweep foci contribute to insecticide resistance in the Drosophila Genetic Reference Panel. G3: Genes, Genomes. Genetics, 8(11), 3489-3497. https://doi.org/10.1534/g3.118.200619.
Berry, C., La Vecchia, C., & Nicotera, P. (2010). Paraquat and Parkinson's disease. Cell Death and Differentiation, 17(7), 1115-1125. https://doi.org/10.1038/cdd.2009.217.
Bird, T. D. (2008). Genetic aspects of Alzheimer disease. Genetics in Medicine, 10(4), 231-239. https://doi.org/10.1097/GIM.0b013e31816b64dc.
Bonilla-Ramirez, L., Jimenez-Del-Rio, M., & Velez-Pardo, C. (2013). Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: Implication in autosomal recessive juvenile Parkinsonism. Gene, 512(2), 355-363. https://doi.org/10.1016/j.gene.2012.09.120.
Bové, J., & Perier, C. (2012). Neurotoxin-based models of Parkinson's disease. Neuroscience, 211, 51-76. https://doi.org/10.1016/j.neuroscience.2011.10.057.
Braak, H., Tredici, K. D., Rüb, U., de Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging, 24(2), 197-211. https://doi.org/10.1016/S0197-4580(02)00065-9.
Bronk, P., Wenniger, J. J., Dawson-Scully, K., Guo, X., Hong, S., Atwood, H. L., & Zinsmaier, K. E. (2001). Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron, 30(2), 475-488. https://doi.org/10.1016/S0896-6273(01)00292-6.
Chaudhuri, A., Bowling, K., Funderburk, C., Lawal, H., Inamdar, A., Wang, Z. & O'Donnell, J. M. (2007). Interaction of genetic and environmental factors in a Drosophila Parkinsonism model. Journal of Neuroscience, 27(10), 2457-2467. https://doi.org/10.1523/JNEUROSCI.4239-06.2007.
Chippindale, A. K., Gibson, J. R., & Rice, W. R. (2001). Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1671-1675. https://doi.org/10.1073/pnas.98.4.1671.
Cicchetti, F., Lapointe, N., Roberge-Tremblay, A., Saint-Pierre, M., Jimenez, L., Ficke, B. W., & Gross, R. E. (2005). Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult rats. Neurobiology of Disease, 20(2), 360-371. https://doi.org/10.1016/j.nbd.2005.03.018.
Clyne, J. D., & Miesenböck, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell, 133(2), 354-363. https://doi.org/10.1016/j.cell.2008.01.050.
Connallon, T., & Clark, A. G. (2014). Balancing selection in species with separate sexes: Insights from Fisher's geometric model. Genetics, 197(3), 991-1006. https://doi.org/10.1534/genetics.114.165605.
Connallon, T., Cox, R. M., & Calsbeek, R. (2010). Fitness consequences of sex-specific selection. Evolution: International Journal of Organic Evolution, 64(6), 1671-1682. https://doi.org/10.1111/j.1558-5646.2009.00934.x.
Connallon, T., & Jordan, C. Y. (2016). Accumulation of deleterious mutations near sexually antagonistic genes. G3: Genes|Genomes|Genetics, 6(8), 2273-2284. https://doi.org/10.1534/g3.116.031161.
Coolon, J. D., Webb, W., & Wittkopp, P. J. (2013). Sex-specific effects of cis-regulatory variants in Drosophila melanogaster. Genetics, 195(4), 1419-1422. https://doi.org/10.1534/genetics.113.156331.
Dendup, T., Feng, X., Clingan, S., & Astell-Burt, T. (2018). Environmental risk factors for developing Type 2 Diabetes Mellitus: A systematic review. International Journal of Environmental Research and Public Health, 15(1), 78. https://doi.org/10.3390/ijerph15010078.
Denecke, S., Fusetto, R., Martelli, F., Giang, A., Battlay, P., Fournier-Level, A., O’ Hair, R. A., & Batterham, P. (2017). Multiple P450s and variation in neuronal genes underpins the response to the insecticide Imidacloprid in a population of Drosophila melanogaster. Scientific Reports, 7(1), 11338. https://doi.org/10.1038/s41598-017-11092-5.
Dinis-Oliveira, R. J., Remião, F., Carmo, H., Duarte, J. A., Navarro, A. S., Bastos, M. L., & Carvalho, F. (2006). Paraquat exposure as an etiological factor of Parkinson's disease. NeuroToxicology, 27(6), 1110-1122. https://doi.org/10.1016/j.neuro.2006.05.012.
Dorner, S., Lum, L., Kim, M., Paro, R., Beachy, P. A., & Green, R. (2006). A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11880-11885.
Dupre, K. B., Ostock, C. Y., Eskow Jaunarajs, K. L., Button, T., Savage, L. M., Wolf, W., & Bishop, C. (2011). Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Experimental Neurology, 229(2), 288-299. https://doi.org/10.1016/j.expneurol.2011.02.012.
Dzul, S. P., Rocha, A. G., Rawat, S., Kandegedara, A., Kusowski, A., Pain, J., Murari, A., Pain, D., Dancis, A., & Stemmler, T. L. (2017). In vitro characterization of a novel Isu homologue from Drosophila melanogaster for de novo FeS-cluster formation. Metallomics, 9(1), 48-60. https://doi.org/10.1039/c6mt00163g.
Ebrahimi-Fakhari, D., Wahlster, L., & McLean, P. J. (2011). Molecular chaperones in Parkinson's disease - present and future. Journal of Parkinson's Disease, 1(4), 299-320.
Ellegren, H., & Parsch, J. (2007). The evolution of sex-biased genes and sex-biased gene expression. Nature Reviews Genetics, 8(9), 689-698. https://doi.org/10.1038/nrg2167.
Fan, H.-C., Ho, L.-I., Chi, C.-S., Chen, S.-J., Peng, G.-S., Chan, T.-M., Lin, S.-Z., & Harn, H.-J. (2014). Polyglutamine (PolyQ) diseases: Genetics to treatments. Cell Transplantation, 23(4-5), 441-458. https://doi.org/10.3727/096368914X678454.
Fiumera, A. C., Dumont, B. L., & Clark, A. G. (2005). Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. Genetics, 169(1), 243-257. https://doi.org/10.1534/genetics.104.032870.
Forger, N. G., & de Vries, G. J. (2010). Cell death and sexual differentiation of behavior: Worms, flies, and mammals. Current Opinion in Neurobiology, 20(6), 776-783. https://doi.org/10.1016/j.conb.2010.09.006.
Gargano, J., Martin, I., Bhandari, P., & Grotewiel, M. (2005). Rapid iterative negative geotaxis (RING): A new method for assessing age-related locomotor decline in Drosophila. Experimental Gerontology, 40(5), 386-395. https://doi.org/10.1016/j.exger.2005.02.005.
Gater, R., Tansella, M., Korten, A., Tiemens, B. G., Mavreas, V. G., & Olatawura, M. O. (1998). Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the World Health Organization Collaborative Study on Psychological problems in general health care. Archives of General Psychiatry, 55(5), 405-413.
Gejman, P., Sanders, A., & Duan, J. (2010). The role of genetics in the etiology of schizophrenia. The Psychiatric Clinics of North America, 33(1), 35-66. https://doi.org/10.1016/j.psc.2009.12.003.
Gundersen, V. (2010). Protein aggregation in Parkinson's disease. Acta Neurologica Scandinavica, 122, 82-87. https://doi.org/10.1111/j.1600-0404.2010.01382.x.
Harbison, S. T., McCoy, L. J., & Mackay, T. F. (2013). Genome-wide association study of sleep in Drosophila melanogaster. BMC Genomics, 14(1), 1-18. https://doi.org/10.1186/1471-2164-14-281.
Huang, W., Carbone, M. A., Magwire, M. M., Peiffer, J. A., Lyman, R. F., Stone, E. A., & Mackay, T. F. C. (2015). Genetic basis of transcriptome diversity in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 112(44), E6010-E6019. https://doi.org/10.1073/pnas.1519159112.
Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ramia, M., Tarone, A. M., Turlapati, L., Zichner, T., Zhu, D., Lyman, R. F., Magwire, M. M., Blankenburg, K., Carbone, M. A., Chang, K., Ellis, L. L., Fernandez, S., Han, Y., Highnam, G., Hjelmen, C. E., … Mackay, T. F. C. (2014). Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Research, 24(7), 1193-1208. https://doi.org/10.1101/gr.171546.113.
Huylmans, A. K., & Parsch, J. (2014). Population- and sex-biased gene expression in the excretion organs of Drosophila melanogaster. G3: Genes, Genomes, Genetics, 4(12), 2307-2315. https://doi.org/10.1534/g3.114.013417.
Inamdar, A. A., Chaudhuri, A., & O’Donnell, J. (2012). The protective effect of Minocycline in a Paraquat-induced Parkinson's disease model in Drosophila is modified in altered genetic backgrounds. Parkinson's Disease, https://doi.org/10.1155/2012/938528.
Isaya, G. (2014). Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease. Frontiers in Pharmacology, 5, https://doi.org/10.3389/fphar.2014.00029.
Jiao, Y., Lu, L., Williams, R. W., & Smeyne, R. J. (2012). Genetic dissection of strain dependent paraquat-induced neurodegeneration in the substantia nigra pars compacta. PLoS One, 7(1), e29447. https://doi.org/10.1371/journal.pone.0029447.
Jimenez-Del-Rio, M., Guzman-Martinez, C., & Velez-Pardo, C. (2010). The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochemical Research, 35(2), 227-238. https://doi.org/10.1007/s11064-009-0046-1.
Karp, N. A., Mason, J., Beaudet, A. L., Benjamini, Y., Bower, L., Braun, R. E., Brown, S. D. M., Chesler, E. J., Dickinson, M. E., Flenniken, A. M., Fuchs, H., Angelis, M. H. D., Gao, X., Guo, S., Greenaway, S., Heller, R., Herault, Y., Justice, M. J., Kurbatova, N., … White, J. K. (2017). Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 8, 15475. https://doi.org/10.1038/ncomms15475.
Khwaja, M., McCormack, A., McIntosh, J. M., Di Monte, D. A., & Quik, M. (2007). Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to α6β2* nAChRs. Journal of Neurochemistry, 100(1), 180-190. https://doi.org/10.1111/j.1471-4159.2006.04177.x.
Kofler, R., & Schlötterer, C. (2012). Gowinda: Unbiased analysis of gene set enrichment for genome-wide association studies. Bioinformatics, 28(15), 2084-2085. https://doi.org/10.1093/bioinformatics/bts315.
Litteljohn, D., Nelson, E., Bethune, C., & Hayley, S. (2011). The effects of paraquat on regional brain neurotransmitter activity, hippocampal BDNF and behavioural function in female mice. Neuroscience Letters, 502(3), 186-191. https://doi.org/10.1016/j.neulet.2011.07.041.
Long, T. A. F., & Rice, W. R. (2007). Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proceedings. Biological sciences/The Royal Society, 274(1629), 3105-3112. https://doi.org/10.1098/rspb.2007.1140.
Mackay, T. F. C., Richards, S., Stone, E. A., Barbadilla, A., Ayroles, J. F., Zhu, D., Casillas, S., Han, Y. I., Magwire, M. M., Cridland, J. M., Richardson, M. F., Anholt, R. R. H., Barrón, M., Bess, C., Blankenburg, K. P., Carbone, M. A., Castellano, D., Chaboub, L., Duncan, L., … Gibbs, R. A. (2012). The Drosophila melanogaster Genetic Reference Panel. Nature, 482(7384), 173-178. https://doi.org/10.1038/nature10811.
Mank, J. E. (2017a). Population genetics of sexual conflict in the genomic era. Nature Reviews Genetics, 18(12), 721-730. https://doi.org/10.1038/nrg.2017.83.
Mank, J. E. (2017b). The transcriptional architecture of phenotypic dimorphism. Nature Ecology & Evolution, 1(1), 0006. https://doi.org/10.1038/s41559-016-0006.
Marcus, S. R. (2017). Characterizing the effects of atrazine exposure on Drosophila melanogaster life history traits and identifying the genetic basis to responsiveness (Unpublished doctoral dissertation). State University of New York at Binghamton. http://gradworks.umi.com/10/00/10003752.html.
McCart, C., Buckling, A., & Ffrench-Constant, R. H. (2005). DDT resistance in flies carries no cost. Current Biology, 15(15), R587-R589. https://doi.org/10.1016/j.cub.2005.07.054.
McGraw, L. A., Fiumera, A. C., Ramakrishnan, M., Madhavarapu, S., Clark, A. G., & Wolfner, M. F. (2007). Larval rearing environment affects several post-copulatory traits in Drosophila melanogaster. Biology Letters, 3(6), 607-610. https://doi.org/10.1098/rsbl.2007.0334.
Meltzer, H., Marom, E., Alyagor, I., Mayseless, O., Berkun, V., Segal-Gilboa, N., Unger, T., Luginbuhl, D., & Schuldiner, O. (2019). Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nature Communications, 10(1), 2113. https://doi.org/10.1038/s41467-019-10140-0.
Metcalfe, N. B., & Alonso-Alvarez, C. (2010). Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Functional Ecology, 24(5), 984-996. https://doi.org/10.1111/j.1365-2435.2010.01750.x.
Morozova, T. V., Huang, W., Pray, V. A., Whitham, T., Anholt, R. R. H., & Mackay, T. F. C. (2015). Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult Drosophila. BMC Genomics, 16(1), 1-16. https://doi.org/10.1186/s12864-015-2064-5.
Morrow, E. H. (2015). The evolution of sex differences in disease. Biology of Sex Differences, 6(1), 5. https://doi.org/10.1186/s13293-015-0023-0.
Morrow, E. H., & Connallon, T. (2013). Implications of sex-specific selection for the genetic basis of disease. Evolutionary Applications, 6(8), 1208-1217. https://doi.org/10.1111/eva.12097.
Muñoz, Y., Carrasco, C. M., Campos, J. D., Aguirre, P., & Núñez, M. T. (2016). Parkinson's disease: The mitochondria-iron link. Parkinson's Disease, 2016, 1-21. https://doi.org/10.1155/2016/7049108.
O’Leary, K. T., Parameswaran, N., Johnston, L. C., McIntosh, J. M., Di Monte, D. A., & Quik, M. (2008). Paraquat exposure reduces nicotinic receptor-evoked dopamine release in monkey striatum. Journal of Pharmacology and Experimental Therapeutics, 327(1), 124-129. https://doi.org/10.1124/jpet.108.141861.
Ober, C., Loisel, D. A., & Gilad, Y. (2008). Sex-specific genetic architecture of human disease. Nature Reviews Genetics, 9(12), 911-922. https://doi.org/10.1038/nrg2415.
Parker, G. A. (1979). In M.S. Blum & N.A. Blum (Eds.), Sexual selection and reproductive competition in insects. (123-166). Academic Press.
Parsa, N. (2012). Environmental factors inducing human cancers. Iranian Journal of Public Health, 41(11), 1-9.
Pennell, T. M., & Morrow, E. H. (2013). Two sexes, one genome: The evolutionary dynamics of intralocus sexual conflict. Ecology and Evolution, 3(6), 1819-1834. https://doi.org/10.1002/ece3.540.
Perkins, L. A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart, I., Binari, R., Shim, H.-S., Miller, A., Housden, A., Foos, M., Randkelv, S., Kelley, C., Namgyal, P., Villalta, C., Liu, L.-P., Jiang, X., … Perrimon, N. (2015). The transgenic RNAi project at Harvard Medical School: Resources and validation. Genetics, 201(3), 843-852. https://doi.org/10.1534/genetics.115.180208.
Przedborski, S., & Ischiropoulos, H. (2005). Reactive oxygen and nitrogen species: Weapons of neuronal destruction in models of Parkinson's disease. Antioxidants & Redox Signaling, 7(5-6), 685-693. https://doi.org/10.1089/ars.2005.7.685.
Quik, M., Bordia, T., & O'Leary, K. (2007). Nicotinic receptors as CNS targets for Parkinson's disease. Biochemical Pharmacology, 74(8), 1224-1234. https://doi.org/10.1016/j.bcp.2007.06.015.
Quik, M., Zhang, D., Perez, X. A., & Bordia, T. (2014). Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacology & Therapeutics, 144(1), 50-59. https://doi.org/10.1016/j.pharmthera.2014.05.004.
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Rajpurohit, S., Gefen, E., Bergland, A. O., Petrov, D. A., Gibbs, A. G., & Schmidt, P. S. (2018). Spatiotemporal dynamics and genome-wide association analysis of desiccation tolerance in Drosophila melanogaster. Molecular Ecology, 27(17), 3525-3540. https://doi.org/10.1111/mec.14814.
Rinaldi, C., & Fischbeck, K. H. (2015). Pathological mechanisms of polyglutamine diseases. Nature Education, 8(4), 5.
Rostant, W. G., Kay, C., Wedell, N., & Hosken, D. J. (2015). Sexual conflict maintains variation at an insecticide resistance locus. BMC Biology, 13(1), 34. https://doi.org/10.1186/s12915-015-0143-3.
Schmucker, D., Jackle, H., & Gaul, U. (1997). Genetic analysis of the larval optic nerve projection in Drosophila. Development, 124(5), 937-948.
Shukla, A. K., Pragya, P., Chaouhan, H. S., Tiwari, A. K., Patel, D. K., Abdin, M. Z., & Chowdhuri, D. K. (2014). Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson's disease. PLoS One, 9(6), e98886. https://doi.org/10.1371/journal.pone.0098886.
Smith, D. T., Hosken, D. J., Rostant, W. G., Yeo, M., Griffin, R. M., Bretman, A., Price, T. A. R., Ffrench-constant, R. H., & Wedell, N. (2011). DDT resistance, epistasis and male fitness in flies. Journal of Evolutionary Biology, 24(6), 1351-1362. https://doi.org/10.1111/j.1420-9101.2011.02271.x.
Storey, J. D., Bass, A. J., Dabney, A., & Robinson, D. (2017). qvalue: Q-value estimation for false discovery rate control (Version R package version 2.15.0). http://github.com/StoreyLab/qvalue.
Swarup, S., Huang, W., Mackay, T. F. C., & Anholt, R. R. H. (2013). Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 1017-1022. https://doi.org/10.1073/pnas.1220168110.
Swenson, J. M., Colmenares, S. U., Strom, A. R., Costes, S. V., & Karpen, G. H. (2016). The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. Elife, 5, e16096.
Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., Comyns, K., Richards, M. B., Meng, C., Priestley, B., Fernandez, H. H., Cambi, F., Umbach, D. M., Blair, A., Sandler, D. P., & Langston, J. W. (2011). Rotenone, Paraquat, and Parkinson's Disease. Environmental Health Perspectives, 119(6), 866-872. https://doi.org/10.1289/ehp.1002839.
Tsetlin, V., Kuzmin, D., & Kasheverov, I. (2011). Assembly of nicotinic and other Cys-loop receptors. Journal of Neurochemistry, 116(5), 734-741. https://doi.org/10.1111/j.1471-4159.2010.07060.x.
Utkin, Y. N., Kryukova, E. V., & Tsetlin, V. I. (2015). What animal models of Parkinsonism tell us about the distinct nicotinic acetylcholine receptors involved in pathogenesis? Journal of Alzheimer's Disease & Parkinsonism, 5(1), 181. https://doi.org/10.4172/2161-0460.1000181.
Uytterhoeven, V., Lauwers, E., Maes, I., Miskiewicz, K., Melo, M. N., Swerts, J., Kuenen, S., Wittocx, R., Corthout, N., Marrink, S.-J., Munck, S., & Verstreken, P. (2015). Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy. Neuron, 88(4), 735-748. https://doi.org/10.1016/j.neuron.2015.10.012.
Weber, A. L., Khan, G. F., Magwire, M. M., Tabor, C. L., Mackay, T. F. C., & Anholt, R. R. H. (2012). Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS One, 7(4), e34745. https://doi.org/10.1371/journal.pone.0034745.
Wooten, G. F., Currie, L. J., Bovbjerg, V. E., Lee, J. K., & Patrie, J. (2004). Are men at greater risk for Parkinson's disease than women? Journal of Neurology, Neurosurgery, and Psychiatry, 75(4), 637-639.
Wright, A. E., Fumagalli, M., Cooney, C. R., Bloch, N. I., Vieira, F. G., Buechel, S. D., Kolm, N., & Mank, J. E. (2018). Male-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture. Evolution Letters, 2(2), 51-62. https://doi.org/10.1002/evl3.39.
Xie, M. (2015). Characterizing the genetic basis of susceptibility to atrazine exposure in male Drosophila melanogaster (Unpublished doctoral dissertation). State University of New York at Binghamton. http://gradworks.umi.com/10/00/10003752.html.
Zhou, S., Luoma, S. E., Armour, G. E. S., Thakkar, E., Mackay, T. F. C., & Anholt, R. R. H. (2017). A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure. PLOS Genetics, 13(7), e1006907. https://doi.org/10.1371/journal.pgen.1006907.
فهرسة مساهمة: Keywords: DGRP; climbing ability; conditional neutrality; genetic architecture; resistance; sexual dimorphism
المشرفين على المادة: 0 (Drosophila Proteins)
PLG39H7695 (Paraquat)
تواريخ الأحداث: Date Created: 20210312 Date Completed: 20210621 Latest Revision: 20210621
رمز التحديث: 20240628
DOI: 10.1111/mec.15878
PMID: 33710693
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.15878