دورية أكاديمية

Changes in virus transmission dynamics following the emergence of RHDV2 shed light on its competitive advantage over previously circulating variants.

التفاصيل البيبلوغرافية
العنوان: Changes in virus transmission dynamics following the emergence of RHDV2 shed light on its competitive advantage over previously circulating variants.
المؤلفون: Taggart PL; Vertebrate Pest Research Unit, Department of Primary Industries NSW, Orange, NSW, Australia.; Centre for Invasive Species Solutions, Bruce, ACT, Australia.; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia., Hall RN; Centre for Invasive Species Solutions, Bruce, ACT, Australia.; CSIRO Health and Biosecurity, Acton, ACT, Australia., Cox TE; Vertebrate Pest Research Unit, Department of Primary Industries NSW, Orange, NSW, Australia., Kovaliski J; Biosecurity SA, Adelaide, SA, Australia.; Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Australia., McLeod SR; Vertebrate Pest Research Unit, Department of Primary Industries NSW, Orange, NSW, Australia., Strive T; Centre for Invasive Species Solutions, Bruce, ACT, Australia.; CSIRO Health and Biosecurity, Acton, ACT, Australia.
المصدر: Transboundary and emerging diseases [Transbound Emerg Dis] 2022 May; Vol. 69 (3), pp. 1118-1130. Date of Electronic Publication: 2021 Mar 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Verlag Country of Publication: Germany NLM ID: 101319538 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1865-1682 (Electronic) Linking ISSN: 18651674 NLM ISO Abbreviation: Transbound Emerg Dis Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Blackwell Verlag
مواضيع طبية MeSH: Caliciviridae Infections*/epidemiology , Caliciviridae Infections*/veterinary , Hemorrhagic Disease Virus, Rabbit*, Animals ; Australia/epidemiology ; Humans ; Immunoglobulin A ; Immunoglobulin M ; Phylogeny ; Rabbits
مستخلص: Rabbit haemorrhagic disease virus (RHDV) is highly pathogenic to European rabbits. Until recently, only one serotype of RHDV was known, GI.1/RHDV. RHDV2/GI.2 is a novel virus that has rapidly spread and become the dominant pathogenic calicivirus in wild rabbits worldwide. It is speculated that RHDV2 has three competitive advantages over RHDV: (a) the ability to partially overcome immunity to other variants; (b) the ability to clinically infect young rabbits; and (c) a wider host range. These differences would be expected to influence virus transmission dynamics. We used markers of recent infection (IgM/IgA antibodies) to investigate virus transmission dynamics pre and post the arrival of RHDV2. Our data set contained over 3,900 rabbits sampled across a 7-year period at 12 Australian sites. Following the arrival of RHDV2, seasonal peaks in IgM and IgA seropositivity shifted forward one season, from winter to autumn and spring to winter, respectively. Contrary to predictions, we found only weak effects of rabbit age, seropositivity to non-pathogenic calicivirus RCV-A1 and population abundance on IgM/IgA seropositivity. Our results demonstrate that RHDV2 enters rabbit populations shortly after the commencement of annual breeding cycles. Upon entering, the population RHDV2 undergoes extensive replication in young rabbits, causing clinical disease, high virus shedding, mortality and the creation of virus-laden carcasses. This results in high virus contamination in the environment, furthering the transmission of RHDV2 and initiating outbreaks, whilst simultaneously removing the susceptible cohort required for the effective transmission of RHDV. Although RHDV may enter the population at the same time point, it is sub-clinical in young rabbits, causing minimal virus shedding and low environmental contamination. Our results demonstrate a major shift in epidemiological patterns in virus transmission, providing the first evidence that RHDV2's ability to clinically infect young rabbits is a key competitive advantage in the field.
(© 2021 Wiley-VCH GmbH.)
References: Abrantes, J., Van Der Loo, W., Le Pendu, J., & Esteves, P. J. (2012). Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): A review. Veterinary Research, 43(1), 12. https://doi.org/10.1186/1297-9716-43-12.
Asgari, S., Hardy, J. R., Sinclair, R. G., & Cooke, B. D. (1998). Field evidence for mechanical transmission of rabbit haemorrhagic disease virus (RHDV) by flies (Diptera: Calliphoridae) among wild rabbits in Australia. Virus Research, 54(2), 123-132. https://doi.org/10.1016/S0168-1702(98)00017-3.
Augusteyn, R. C. (2007). On the relationship between rabbit age and lens dry weight: Improved determination of the age of rabbits in the wild. Molecular Vision, 13, 2030-2034.
Barton, K., & Barton, M. K. (2019). Package ‘MuMIn’. R package version, 1(6).
Begon, M., Bennett, M., Bowers, R. G., French, N. P., Hazel, S., & Turner, J. (2002). A clarification of transmission terms in host-microparasite models: Numbers, densities and areas. Epidemiology & Infection, 129(1), 147-153. https://doi.org/10.1017/S0950268802007148.
Brooks, M. E., Kristensen, K., Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400. https://doi.org/10.32614/RJ-2017-066.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. Springer Science & Business Media.
Camarda, A., Pugliese, N., Cavadini, P., Circella, E., Capucci, L., Caroli, A., Legretto, M., Mallia, E., & Lavazza, A. (2014). Detection of the new emerging rabbit haemorrhagic disease type 2 virus (RHDV2) in Sicily from rabbit (Oryctolagus cuniculus) and Italian hare (Lepus corsicanus). Research in Veterinary Science, 97(3), 642-645. https://doi.org/10.1016/j.rvsc.2014.10.008.
Capucci, L., Scicluna, M., & Lavazza, A. (1991). Diagnosis of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Revue Scientifique et Technique, 10(2), 347-370. https://doi.org/10.20506/rst.10.2.561.
Cooke, B. (2002). Rabbit haemorrhagic disease: Field epidemiology and the management of wild rabbit populations. Revue Scientifique et Technique-Office International Des Epizooties, 21(1), 347-358. https://doi.org/10.20506/rst.21.2.1337.
Cooke, B., Duncan, R., McDonald, I., Liu, J., Capucci, L., Mutze, G., & Strive, T. (2018). Prior exposure to non-pathogenic calicivirus RCV-A1 reduces both infection rate and mortality from rabbit haemorrhagic disease in a population of wild rabbits in Australia. Transboundary and Emerging Diseases, 65(2), e470-e477. https://doi.org/10.1111/tbed.12786.
Cooke, B., & Fenner, F. (2002). Rabbit haemorrhagic disease and the biological control of wild rabbits, Oryctolagus cuniculus, in Australia and New Zealand. Wildlife Research, 29(6), 689-706. https://doi.org/10.1071/WR02010.
Cooke, B., Robinson, A., Merchant, J., Nardin, A., & Capucci, L. (2000). Use of ELISAs in field studies of rabbit haemorrhagic disease (RHD) in Australia. Epidemiology & Infection, 124(3), 563-576. https://doi.org/10.1017/S0950268899003994.
Dalton, K. P., Nicieza, I., Balseiro, A., Muguerza, M. A., Rosell, J. M., Casais, R., Álvarez, Á. L., & Parra, F. (2012). Variant rabbit hemorrhagic disease virus in young rabbits, Spain. Emerging Infectious Diseases, 18(12), 2009. https://doi.org/10.3201/eid1812.120341.
Dard, C., Bailly, S., Drouet, T., Fricker-Hidalgo, H., Brenier-Pinchart, M., & Pelloux, H. (2017). Long-term sera storage does not significantly modify the interpretation of toxoplasmosis serologies. Journal of Microbiological Methods, 134, 38-45. https://doi.org/10.1016/j.mimet.2017.01.003.
Dudzinski, M., & Mykytowycz, R. (1961). The eye lens as an indicator of age in the wild rabbit in Australia. Wildlife Research, 6(2), 156-159. https://doi.org/10.1071/CWR9610156.
Fine, P., Eames, K., & Heymann, D. L. (2011). “Herd immunity”: A rough guide. Clinical Infectious Diseases, 52(7), 911-916. https://doi.org/10.1093/cid/cir007.
Fiske, I., & Chandler, R. (2011). unmarked: AnRPackage for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43(10), 1-23. https://doi.org/10.18637/jss.v043.i10.
Gregg, D., House, C., Meyer, R., & Berninger, M. (1991). Viral haemorrhagic disease of rabbits in Mexico: Epidemiology and viral characterization. Revue Scientifique et Technique-Office International des Epizooties, 10(2), 435-445l. https://doi.org/10.20506/rst.10.2.556.
Hall, R., Huang, N., Roberts, J., & Strive, T. (2019). Carrion flies as sentinels for monitoring lagovirus activity in Australia. Transboundary and Emerging Diseases, 66, 2025-2032. https://doi.org/10.1111/tbed.13250.
Hall, R., Peacock, D., Kovaliski, J., Mahar, J., Mourant, R., Piper, M., & Strive, T. (2017). Detection of RHDV2 in European brown hares (Lepus europaeus) in Australia. Veterinary Record, 180(5), 121-121.
Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.0. http://florianhartig.github.io/DHARMa/.
Henning, J., Meers, J., Davies, P., & Morris, R. (2005). Survival of rabbit haemorrhagic disease virus (RHDV) in the environment. Epidemiology & Infection, 133(4), 719-730. https://doi.org/10.1017/S0950268805003766.
Henzell, R. P., Cunningham, R. B., & Neave, H. M. (2002). Factors affecting the survival of Australian wild rabbits exposed to rabbit haemorrhagic disease. Wildlife Research, 29(6), 523-542. https://doi.org/10.1071/WR00083.
Invasive Animals Ltd (2020). RabbitScan. Retieved from https://www.feralscan.org.au/rabbitscan/. Accessed: 12 March 2020.
Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990-993. https://doi.org/10.1038/nature06536.
Le Gall-Reculé, G., Zwingelstein, F., Boucher, S., Le Normand, B., Plassiart, G., Portejoie, Y., Decors, A., Bertagnoli, S., Guérin, J.-L., & Marchandeau, S. (2011). Detection of a new variant of rabbit haemorrhagic disease virus in France. Veterinary Record, 168(5), 137-138. https://doi.org/10.1136/vr.d697.
Liu, J., Fordham, D. A., Cooke, B., Cox, T., Mutze, G., & Strive, T. (2014). Distribution and prevalence of the Australian non-pathogenic rabbit calicivirus is correlated with rainfall and temperature. PLoS One, 9(12), e113976.-https://doi.org/10.1371/journal.pone.0113976.
Liu, J., Kerr, P. J., & Strive, T. (2012). A sensitive and specific blocking ELISA for the detection of rabbit calicivirus RCV-A1 antibodies. Virology Journal, 9(1), 182.-https://doi.org/10.1186/1743-422X-9-182.
Liu, J., Kerr, P. J., Wright, J. D., & Strive, T. (2012). Serological assays to discriminate rabbit haemorrhagic disease virus from Australian non-pathogenic rabbit calicivirus. Veterinary Microbiology, 157(3-4), 345-354. https://doi.org/10.1016/j.vetmic.2012.01.018.
Lopes, A. M., Marques, S., Silva, E., Magalhães, M. J., Pinheiro, A., Alves, P. C., & Abrantes, J. (2014). Detection of RHDV strains in the Iberian hare (Lepus granatensis): Earliest evidence of rabbit lagovirus cross-species infection. Veterinary Research, 45(1), 94.
Mahar, J. E., Hall, R. N., Peacock, D., Kovaliski, J., Piper, M., Mourant, R., Huang, N., Campbell, S., Gu, X., Read, A., & Urakova, N. (2018). Rabbit hemorrhagic disease virus 2 (RHDV2; GI. 2) is replacing endemic strains of RHDV in the Australian landscape within 18 months of its arrival. Journal of Virology, 92(2), e01374-01317.
Matthaei, M., Kerr, P. J., Read, A. J., Hick, P., Haboury, S., Wright, J. D., & Strive, T. (2014). Comparative quantitative monitoring of rabbit haemorrhagic disease viruses in rabbit kittens. Virology Journal, 11(1), 109. https://doi.org/10.1186/1743-422X-11-109.
McColl, K., Morrissy, C., Collins, B., & Westbury, H. (2002). Persistence of rabbit haemorrhagic disease virus in decomposing rabbit carcases. Australian Veterinary Journal, 80(5), 298-299. https://doi.org/10.1111/j.1751-0813.2002.tb10848.x.
Mitchell, B., & Balogh, S. (2007). Monitoring techniques for vertebrate pests: Rabbits. Bureau of Rural Sciences, Canberra.
Mutze, G., Kovaliski, J., Butler, K., Capucci, L., & McPhee, S. (2010). The effect of rabbit population control programmes on the impact of rabbit haemorrhagic disease in south-eastern Australia. Journal of Applied Ecology, 47(5), 1137-1146. https://doi.org/10.1111/j.1365-2664.2010.01844.x.
Mutze, G., Linton, V., & Greenfield, B. (1998). The impact of rabbit calicivirus disease on the flora and fauna of the Flinders Ranges, South Australia. Proceedings of the Australian Vertebrate Pest Conference.
Mutze, G., Sinclair, R., Peacock, D., Kovaliski, J., & Capucci, L. (2010). Does a benign calicivirus reduce the effectiveness of rabbit haemorrhagic disease virus (RHDV) in Australia? Experimental evidence from field releases of RHDV on bait. Wildlife Research, 37(4), 311-319. https://doi.org/10.1071/WR09162.
Myers, K., & Gilbert, N. (1968). Determination of age of wild rabbits in Australia. The Journal of Wildlife Management, 841-849. https://doi.org/10.2307/3799559.
Neave, M., Hall, R., Huang, N., McColl, K., Kerr, P., Hoehn, M., Taylor, J., & Strive, T. (2018). Robust innate immunity of young rabbits mediates resistance to rabbit hemorrhagic disease caused by Lagovirus Europaeus GI. 1 but not GI. 2. Viruses, 10(9), 512.-https://doi.org/10.3390/v10090512.
Neimanis, A. S., Ahola, H., Pettersson, U. L., Lopes, A. M., Abrantes, J., Zohari, S., & Gavier-Widén, D. (2018). Overcoming species barriers: An outbreak of Lagovirus europaeus GI. 2/RHDV2 in an isolated population of mountain hares (Lepus timidus). BMC Veterinary Research, 14(1), 367.
Neimanis, A., Ahola, H., Zohari, S., Larsson Pettersson, U., Bröjer, C., Capucci, L., & Gavier-Widén, D. (2018). Arrival of rabbit haemorrhagic disease virus 2 to northern Europe: Emergence and outbreaks in wild and domestic rabbits (Oryctolagus cuniculus) in Sweden. Transboundary and Emerging Diseases, 65(1), 213-220.
Neimanis, A., Pettersson, U. L., Huang, N., Gavier-Widén, D., & Strive, T. (2018). Elucidation of the pathology and tissue distribution of Lagovirus europaeus GI. 2/RHDV2 (rabbit haemorrhagic disease virus 2) in young and adult rabbits (Oryctolagus cuniculus). Veterinary Research, 49(1), 46.
OIE. (2020). Rabbit haemorrhagic disease, United States of America. Retrieved from https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=34197. Accessed June 1, 2021.
Pasch, B., Bolker, B. M., & Phelps, S. M. (2013). Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. The American Naturalist, 182(5), E161-E173.
Peacock, D., Kovaliski, J., Sinclair, R., Mutze, G., Iannella, A., & Capucci, L. (2017). RHDV2 overcoming RHDV immunity in wild rabbits (Oryctolagus cuniculus) in Australia. Veterinary Record, 180(11), 280-280.
Puggioni, G., Cavadini, P., Maestrale, C., Scivoli, R., Botti, G., Ligios, C., & Capucci, L. (2013). The new French 2010 Rabbit Hemorrhagic Disease Virus causes an RHD-like disease in the Sardinian Cape hare (Lepus capensis mediterraneus). Veterinary Research, 44(1), 96.
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Ramsey, D. S., Cox, T., Strive, T., Forsyth, D. M., Stuart, I., Hall, R., Elsworth, P., & Campbell, P. (2020). Emerging RHDV2 suppresses the impact of endemic and novel strains of RHDV on wild rabbit populations. Journal of Applied Ecology, 57(3), 630-641. https://doi.org/10.1111/1365-2664.13548.
Robinson, A., So, P., Müller, W., Cooke, B., & Capucci, L. (2002). Statistical models for the effect of age and maternal antibodies on the development of rabbit haemorrhagic disease in Australian wild rabbits. Wildlife Research, 29(6), 663-671.
Robinson, C., & Schumacker, R. (2009). Interaction effects: Centering, variance inflation factor, and interpretation issues. Multiple Linear Regression Viewpoints, 35(1), 6-11.
Rouco, C., Abrantes, J., Serronha, A., Lopes, A., Maio, E., Magalhães, M., & Santos, N. (2018). Epidemiology of RHDV 2 (Lagovirus europaeus/GI.2) in free-living wild European rabbits in Portugal. Transboundary and Emerging Diseases, 65(2), e373-e382.
Rouco, C., Aguayo-Adán, J. A. Santoro, S., Abrantes, J., & Delibes-Mateos, M. (2019). Worldwide rapid spread of the novel rabbit haemorrhagic disease virus (GI.2/RHDV2/b). Transboundary and Emerging Diseases, 66(4), 1762-1764.
Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60(1), 108-115.
Smith, G. C., Pugh, B., & Trout, R. C. (1995). Age and sex bias in samples of wild rabbits, Oryctolagus cuniculus, from wild populations in southern England. New Zealand Journal of Zoology, 22(2), 115-121.
Strive, T., Elsworth, P., Liu, J., Wright, J. D., Kovaliski, J., & Capucci, L. (2013). The non-pathogenic Australian rabbit calicivirus RCV-A1 provides temporal and partial cross protection to lethal rabbit haemorrhagic disease virus infection which is not dependent on antibody titres. Veterinary Research, 44(1), 51.-https://doi.org/10.1186/1297-9716-44-51.
Strive, T., Piper, M., Huang, N., Mourant, R., Kovaliski, J., Capucci, L., Cox, T. E., & Smith, I. (2019a). Differential serological diagnostics of different rabbit haemorrhagic disease viruses co-circulating in Australia. bioRxiv, 613158.
Strive, T., Piper, M., Huang, N., Mourant, R., Kovaliski, J., Capucci, L., Cox, T. E., Smith, I. (2019b). Retrospective serological analysis reveals presence of the emerging lagovirus RHDV2 in Australia in wild rabbits at least five months prior to its first detection. Transboundary and Emerging Diseases, 67(2), 822-833.
Symonds, M. R., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65(1), 13-21. https://doi.org/10.1007/s00265-010-1037-6.
Velarde, R., Cavadini, P., Neimanis, A., Cabezón, O., Chiari, M., Gaffuri, A., & Lavazza, A. (2017). Spillover Events of Infection of Brown Hares (Lepus europaeus) with Rabbit Haemorrhagic Disease Type 2 Virus (RHDV 2) Caused Sporadic Cases of an European Brown Hare Syndrome-Like Disease in Italy and Spain. Transboundary and Emerging Diseases, 64(6), 1750-1761.
Wood, D. (1980). The demography of a rabbit population in an arid region of New South Wales Australia. The Journal of Animal Ecology, 49(1), 55-79. https://doi.org/10.2307/4277.
Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3-14.10.111/j.2041-210x.2009.00001.x.
فهرسة مساهمة: Keywords: biocontrol; ecology; epidemiology; infectious disease; invasive; lagovirus
المشرفين على المادة: 0 (Immunoglobulin A)
0 (Immunoglobulin M)
تواريخ الأحداث: Date Created: 20210316 Date Completed: 20220506 Latest Revision: 20220506
رمز التحديث: 20221213
DOI: 10.1111/tbed.14071
PMID: 33724677
قاعدة البيانات: MEDLINE
الوصف
تدمد:1865-1682
DOI:10.1111/tbed.14071