دورية أكاديمية

Electrochemical Sensor Based on Reduced Graphene Oxide/Double-Walled Carbon Nanotubes/Octahedral Fe 3 O 4 /Chitosan Composite for Glyphosate Detection.

التفاصيل البيبلوغرافية
العنوان: Electrochemical Sensor Based on Reduced Graphene Oxide/Double-Walled Carbon Nanotubes/Octahedral Fe 3 O 4 /Chitosan Composite for Glyphosate Detection.
المؤلفون: Thanh CT; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Binh NH; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Duoc PND; VNU-University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam.; Department of Physics, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang, Vietnam., Thu VT; University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Van Trinh P; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Anh NN; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Van Tu N; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Tuyen NV; Faculty of Physics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam., Van Quynh N; University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Tu VC; University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam., Thao BTP; Viet Tri University of Industry, Lam Thao, Viet Tri, Phu Tho, Vietnam., Thang PD; VNU-University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam., Abe H; Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan. h-abe@jwri.osaka-u.ac.jp., Van Chuc N; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. chucnv@ims.vast.vn.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. chucnv@ims.vast.vn.
المصدر: Bulletin of environmental contamination and toxicology [Bull Environ Contam Toxicol] 2021 Jun; Vol. 106 (6), pp. 1017-1023. Date of Electronic Publication: 2021 Mar 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: United States NLM ID: 0046021 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0800 (Electronic) Linking ISSN: 00074861 NLM ISO Abbreviation: Bull Environ Contam Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York : Springer Verlag
مواضيع طبية MeSH: Chitosan* , Graphite* , Nanotubes, Carbon*, Electrochemical Techniques ; Electrodes ; Glycine/analogs & derivatives ; Limit of Detection ; Glyphosate
مستخلص: In this work, reduced graphene oxide/double-walled carbon nanotubes/octahedral-Fe 3 O 4 /chitosan composite material modified screen-printed gold electrodes (rGO/DWCNTs/Oct-Fe 3 O 4 /Cs/SPAuE) under inhibition of urease enzyme was developed for the determination of glyphosate (GLY). The electrochemical behaviors of GLY on these electrodes were evaluated by square wave voltammetry (SWV). With the electroactive surface area is 1.7 times higher than that of bare SPAuE, the rGO/DWCNTs/Oct-Fe 3 O 4 /Cs/SPAuE for detection of GLY shows a low detection limit (LOD) of ~ 0.08 ppb in a large concentration range of 0.1-1000 ppb. Moreover, it is also successfully applied to the determination of GLY in river water samples with recoveries and relative standard deviations (RSDs) from 98.7% to 106.9% and from 0.79% to 0.87%, respectively. The developed composite will probably provide an universal electrochemical sensing platform that is very promising for environmental monitoring.
References: Abe H, Naka T, Sato K et al (2019) Shape-controlled syntheses of magnetite microparticles and their magnetorheology. Int J Mol Sci. https://doi.org/10.3390/ijms20153617. (PMID: 10.3390/ijms20153617)
Ayad MM, Amer WA, Kotp MG et al (2017) Synthesis of silver-anchored polyaniline-chitosan magnetic nanocomposite: a smart system for catalysis. RSC Adv. https://doi.org/10.1039/c7ra02575k. (PMID: 10.1039/c7ra02575k)
Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications, New York: Wiley, 2001, 2nd ed. Russ J Electrochem. https://doi.org/10.1023/A:1021637209564. (PMID: 10.1023/A:1021637209564)
Bera M, Chandravati GP, Maji PK (2017) Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2018.14306. (PMID: 10.1166/jnn.2018.14306)
Boikanyo D, Adekunle AS, Ebenso EE (2016) Electrochemical study of pyrene on glassy carbon electrode modified with metal-oxide nanoparticles and graphene oxide/multi-walled carbon nanotubes nanoplatform. J Nano Res 44:158–195. (PMID: 10.4028/www.scientific.net/JNanoR.44.158)
Chen Q, Zheng J, Yang Q et al (2019) Insights into the glyphosate adsorption behavior and mechanism by a MnFe 2 O 4 @cellulose-activated carbon magnetic hybrid. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b22386. (PMID: 10.1021/acsami.8b22386)
Dağcı Kıranşan K, Aksoy M, Topçu E (2018) Flexible and freestanding catalase-Fe 3 O 4 /reduced graphene oxide paper: enzymatic hydrogen peroxide sensor applications. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2018.05.032. (PMID: 10.1016/j.materresbull.2018.05.032)
Duoc PND, Binh NH, Van HT et al (2020) A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123185. (PMID: 10.1016/j.jhazmat.2020.123185)
Ghalkhani M, Shahrokhian S, Navabi M (2020) Development of an electrochemical sensor based on (rGO-CNT) nanocomposite for raloxifene analysis. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.124131. (PMID: 10.1016/j.matchemphys.2020.124131)
Gholivand MB, Akbari A, Norouzi L (2018) Development of a novel hollow fiber-pencil graphite modified electrochemical sensor for the ultra-trace analysis of glyphosate. Sens Actuators B. https://doi.org/10.1016/j.snb.2018.05.170. (PMID: 10.1016/j.snb.2018.05.170)
Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc. https://doi.org/10.1021/ja01539a017. (PMID: 10.1021/ja01539a017)
Hussain N, Das MR (2017) Magnetically recoverable graphene-based nanocomposite material as an efficient catalyst for the synthesis of propargylamines: via A3 coupling reaction. New J Chem. https://doi.org/10.1039/c7nj03412a. (PMID: 10.1039/c7nj03412a)
Kumar R, Singh RK, Dubey PK et al (2015) Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead-CNT-graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.5b04336. (PMID: 10.1021/acsami.5b04336)
Kumar R, Singh RK, Alaferdov AV, Moshkalev SA (2018) Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochim Acta. https://doi.org/10.1016/j.electacta.2018.05.157. (PMID: 10.1016/j.electacta.2018.05.157)
Kumar R, Joanni E, Savu R et al (2019) Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy. https://doi.org/10.1016/j.energy.2019.05.032. (PMID: 10.1016/j.energy.2019.05.032)
Motojyuku M, Saito T, Akieda K et al (2008) Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography–mass spectrometry. J Chromatogr B. https://doi.org/10.1016/j.jchromb.2008.10.003. (PMID: 10.1016/j.jchromb.2008.10.003)
Nehru S, Sakthinathan S, Tamizhdurai P et al (2020) Reduced graphene oxide/multiwalled carbon nanotube composite decorated with Fe 3 O 4 magnetic nanoparticles for electrochemical determination of hydrazine in environmental water. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2020.17379. (PMID: 10.1166/jnn.2020.17379)
Neves V, Heister E, Costa S et al (2012) Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology. https://doi.org/10.1088/0957-4484/23/36/365102. (PMID: 10.1088/0957-4484/23/36/365102)
Pham VT, Cao TT, Le VC et al (2017) Effect of organic solvents on the properties of DWCNT/PEDOT:PSS transparent conductive films. Mater Res Express. https://doi.org/10.1088/2053-1591/aa90ac. (PMID: 10.1088/2053-1591/aa90ac)
Sakthivel R, Annalakshmi M, Chen SM et al (2019) A novel sensitive and reliable electrochemical determination of palmatine based on CeO 2 /RGO/MWCNT ternary composite. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2018.11.008. (PMID: 10.1016/j.jtice.2018.11.008)
Setznagl S, Cesarino I (2020) Copper nanoparticles and reduced graphene oxide modified a glassy carbon electrode for the determination of glyphosate in water samples. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1720667. (PMID: 10.1080/03067319.2020.1720667)
Sok V, Fragoso A (2019) Amperometric biosensor for glyphosate based on the inhibition of tyrosinase conjugated to carbon nano-onions in a chitosan matrix on a screen-printed electrode. Microchim Acta. https://doi.org/10.1007/s00604-019-3672-6. (PMID: 10.1007/s00604-019-3672-6)
Turhan DÖ, Güngördü A, Ozmen M (2020) Developmental and lethal effects of glyphosate and a glyphosate-based product on Xenopus laevis embryos and tadpoles. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-019-02774-z. (PMID: 10.1007/s00128-019-02774-z)
Vaghela C, Kulkarni M, Haram S et al (2018) A novel inhibition based biosensor using urease nanoconjugate entrapped biocomposite membrane for potentiometric glyphosate detection. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.11.136. (PMID: 10.1016/j.ijbiomac.2017.11.136)
Wei X, Gao X, Zhao L et al (2013) Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. J Chromatogr A. https://doi.org/10.1016/j.chroma.2013.01.039. (PMID: 10.1016/j.chroma.2013.01.039)
Zhang Y, Dang Y, Lin X et al (2020) Determination of glyphosate and glufosinate in corn using multi-walled carbon nanotubes followed by ultra high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A. https://doi.org/10.1016/j.chroma.2020.460939. (PMID: 10.1016/j.chroma.2020.460939)
Zhao Z, Zhang J, Wang W et al (2019) Synthesis and electrochemical properties of Co 3 O 4 -rGO/CNTs composites towards highly sensitive nitrite detection. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.04.202. (PMID: 10.1016/j.apsusc.2019.04.202)
معلومات مُعتمدة: CS.06/20-21 Institute of Materials Science; JP17H03404 JSPS KAKENHI
فهرسة مساهمة: Keywords: Chitosan; Double-walled carbon nanotube; Electrochemical sensor; Glyphosate; Octahedral Fe3O4; Reduced graphene oxide
المشرفين على المادة: 0 (Nanotubes, Carbon)
0 (graphene oxide)
7782-42-5 (Graphite)
9012-76-4 (Chitosan)
TE7660XO1C (Glycine)
تواريخ الأحداث: Date Created: 20210320 Date Completed: 20210630 Latest Revision: 20231213
رمز التحديث: 20231215
DOI: 10.1007/s00128-021-03179-7
PMID: 33743019
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0800
DOI:10.1007/s00128-021-03179-7