دورية أكاديمية

Chironomus sancticaroli generation test applied to chemical contaminants and freshwater sediment samples.

التفاصيل البيبلوغرافية
العنوان: Chironomus sancticaroli generation test applied to chemical contaminants and freshwater sediment samples.
المؤلفون: Felipe MC; Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil. mayarafelipe@usp.br., Bernegossi AC; Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil., Cardoso-Silva BN; Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil., Dell'Acqua MM; Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil., Corbi JJ; Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation (SHS), São Carlos School of Engineering (EESC), University of Sao Paulo-USP, C.P. 359, São Carlos, SP, CEP 13566-590, Brazil.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Aug; Vol. 28 (29), pp. 39282-39295. Date of Electronic Publication: 2021 Mar 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Chironomidae* , Water Pollutants, Chemical*/analysis , Water Pollutants, Chemical*/toxicity, Animals ; Brazil ; Ecotoxicology ; Fresh Water ; Geologic Sediments
مستخلص: The use of ecotoxicological bioassays has been increasing due to the importance of understanding the effects of substances on biota and to help environmental agencies determine water and sediment qualities. The use of Chironomus sp. in laboratory bioassays is extensive, but there is still a lack of studies regarding the application of extended ecotoxicological tests, which evaluate different population generation responses and show a detailed impact on their development. The present study investigated the response of Chironomus sancticaroli, a Brazilian endemic insect, to 17α-ethinylestradiol hormone, caffeine anhydrous, LAS (linear alkylbenzene sulfonate), and environmental samples (sediments) in relation to wing length, fecundity, and larval length over three generations. Statistically, differences for all contaminants between P (parental), F1, and F2 generations (p ≤ 0.05) were observed, indicating that in the environment, the organism may be negatively affected when exposed to contaminants in successive generations. Different ecological responses were also noted in comparison to classic acute (96h) and chronic (10 days) ecotoxicological tests using Chironomus sancticaroli. Our results highlight that the generation test can present more detailed results regarding the effects of stressors on the organism's life cycle than do the classic bioassays.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: ABNT(2015) Associação Brasileira de Normas Técnicas ABNT NBR 15469: Ecotoxicologia – Coleta, preservação e preparo de amostras. ABTN Rio de Janeiro 22p.
Aguirre-Martínez GV, DelValls AT, Laura Martín-Díaz M (2013) Identification of biomarkers responsive to chronic exposure to pharmaceuticals in target tissues of Carcinus maenas. Mar Environ Res 87-88:1–11. https://doi.org/10.1016/j.marenvres.2013.02.011. (PMID: 10.1016/j.marenvres.2013.02.011)
Aguirre-Martínez GV, DelValls AT, Laura Martín-Díaz M (2015) Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774). Ecotoxicol Environ Saf 120:142–154. https://doi.org/10.1016/j.ecoenv.2015.05.036. (PMID: 10.1016/j.ecoenv.2015.05.036)
Ahmed MB, Zhou JL, Ngo HH, Guo W, Thomaidis NS, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J Hazard Mater 323:274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045. (PMID: 10.1016/j.jhazmat.2016.04.045)
Amorim ACF, Castillo AR (2009) Macroinvertebrados bentônicos como bioindicadores da qualidade da água do baixo rio Perequê, Cubatão, São Paulo, Brasil. Biodiversidade Pampeana 7:16–22.
Angelotti-Netto A, Crestana S, Oliveira SC, Barbosa RVR (2004) Metais pesados provenientes de atividade agrícola: formas, prevenção e controle. In - Bacia Hidrográfica (Eds Espíndola E.L.G e Wendland E.). Rima Editora São Carlos p 1-14.
Arthur JW (1970) Chronic effects of linear alkylate sulfonate detergent on Gammarus pseudolimnaeus, Campeloma decisum and Physa integra. Water Res 4(3):251–257. https://doi.org/10.1016/0043-1354(70)90071-0. (PMID: 10.1016/0043-1354(70)90071-0)
Barata C, Campos B, Rivetti C, LeBlanc GA, Eytcheson S, Mckinight S, Tobor-Kaplon M, de Vries BS, Choi S, Choi J, Sarapultseva EI, Coutellec MA, Coke M, Pandard P, Chaumot A, Quéau H, Delorme N, Geffard O, Martínez-Jerónimo F, Watanabe H, Tatarazako N, Lopes I, Pestana JLT, Soares AMVM, Pereira CM, De Schamphelaere K (2017) Validation of a two-generational reproduction test in Daphnia magna: An interlaboratory exercise. Sci Total Environ 579:1073–1083. https://doi.org/10.1016/j.scitotenv.2016.11.066. (PMID: 10.1016/j.scitotenv.2016.11.066)
Bardach JE, Fujiya M, Holl A (1965) Detergents: effects on the chemical senses of the fish Ictalurus natalis (le Sueur). Science 148(3677):1605–1607. https://doi.org/10.1126/science.148.3677.1605. (PMID: 10.1126/science.148.3677.1605)
Bernegossi AC (2019) Toxic effect of caffeine on the life cycle of Chironomus sancticaroli (Diptera: Chironomidae) and Daphnia magna (Cladocera: Daphnidae). 2019. 111 f. Dissertation (Master of Science) - São Carlos School of Engineering, University of São Paulo, São Carlos.
Bernegossi AC, Cardoso BNP, Felipe MC, de Lima e Silva MR, Corbi JJ (2019) Chironomus sancticaroli generation test: A new methodology with a Brazilian endemic insect. MethodsX 6:92–97. https://doi.org/10.1016/j.mex.2018.12.013. (PMID: 10.1016/j.mex.2018.12.013)
Bhandari RK, Vom Saal FS, Tillitt DE (2015) Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka, Oryzias latipes. Sci Rep 5:9303. https://doi.org/10.1038/srep09303. (PMID: 10.1038/srep09303)
Bittencourt S, Aisse MM, Serrat BM, Azevedo JCR (2016) Sorção de poluentes orgânicos emergentes em lodo de esgoto. Engenharia Sanitária e Ambiental 21:43–53. https://doi.org/10.1590/S1413-41520201600100119334. (PMID: 10.1590/S1413-41520201600100119334)
Busse L, Nagoda C (2015) Detection of Caffeine in the Streams and Rivers within the San Diego Region Pilot Study. Surface Water Monitoring Program, San Diego, Califórnia.
Campos D, Silva ARR, Loureiro S, Grabicová K, Staňová AV, Soares AM, Pestana JL (2019) Two-generational effects of Benzophenone-3 on the aquatic midge Chironomus riparius. Sci Total Environ 669:983–990. https://doi.org/10.1016/j.scitotenv.2019.03.023. (PMID: 10.1016/j.scitotenv.2019.03.023)
Cantwell MG, Katz DR, Sullivan JC, Borci T, Chen RF (2016) Caffeine in Boston Harbor past and present, assessing its utility as a tracer of wastewater contamination in an urban estuary. Mar Pollut Bull 108:321–324. https://doi.org/10.1016/j.marpolbul.2016.04.006. (PMID: 10.1016/j.marpolbul.2016.04.006)
Chappie DJ, Burton GA Jr (1997) Optimization of in situ bioassays with Hyalella azteca and Chironomus tentans. Environmental Toxicology and Chemistry: An International Journal 16(3):559–564. https://doi.org/10.1002/etc.5620160323. (PMID: 10.1002/etc.5620160323)
Chen Z, Pavelic P, Dillon P, Naidu R (2002) Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Res 36:4830–4838. https://doi.org/10.1016/S0043-1354(02)00221-X. (PMID: 10.1016/S0043-1354(02)00221-X)
Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947–954. https://doi.org/10.1016/j.watres.2003.10.058. (PMID: 10.1016/j.watres.2003.10.058)
Clouzot L, Marrot B, Doumenq P, Roche N (2008) 17α-Ethinylestradiol: An endocrine disrupter of great concern. Analytical methods and removal processes applied to water purification. A review. Environ Prog 27:383–396. https://doi.org/10.1002/ep.10291. (PMID: 10.1002/ep.10291)
Clubbs RL, Brooks BW (2007) Daphnia magna responses to a vertebrate estrogen receptor agonist and an antagonist: A multigenerational study. Ecotoxicol Environ Saf 67:385–398. https://doi.org/10.1016/j.ecoenv.2007.01.009. (PMID: 10.1016/j.ecoenv.2007.01.009)
Coelho KS, Rocha O (2010) Assessment of the potential toxicity of a linear alkylbenzene sulfonate (LAS) to freshwater animal life by means of cladoceran bioassays. Ecotoxicology 19:812–818. https://doi.org/10.1007/s10646-009-0458-3. (PMID: 10.1007/s10646-009-0458-3)
Colombo-Corbi V, Gorni GR, Sanzovo-Falcoski T, Costa PI, Corbi JJ (2017) Genetic diversity loss in Chironomus sancticaroli (Diptera: Chironomidae) exposed to Pyrimethanil fungicide: an analysis using RAPD technique. Water Air Soil Pollut 228:399. https://doi.org/10.1007/s11270-017-3578-z. (PMID: 10.1007/s11270-017-3578-z)
CONAB (2020) Companhia Nacional de Abastecimento Acompanhamento de safra brasileira: cana-de-açúcar, segundo levantamento, agosto/2020 - Companhia Nacional de Abastecimento, Brasília.
Corbi JJ, Trivinho-Strixino S (2008) Relationship between sugar cane cultivation and stream macroinvertebrate communities. Braz Arch Biol Technol 51:569–579. https://doi.org/10.1590/S1516-89132008000400015. (PMID: 10.1590/S1516-89132008000400015)
Corbi JJ, Trivinho-Strixino S (2017) Chironomid species are sensitive to sugarcane cultivation. Hydrobiologia 785:91–99. https://doi.org/10.1007/s10750-016-2908-2. (PMID: 10.1007/s10750-016-2908-2)
Corbi JJ, Trivinho-Strixino S, dos Santos A, Del Grande M (2006) Environmental diagnostic of metals and organochlorated compounds in streams near sugarcane plantations activity (State of São Paulo, Brazil). Química Nova 29:61–65. https://doi.org/10.1590/S0100-40422006000100013. (PMID: 10.1590/S0100-40422006000100013)
Corbi JJ, Trivinho-Strixino S, dos Santos A (2008) Environmental evaluation of metals in sediments and dragonflies due to sugar cane cultivation in Neotropical streams. Water Air Soil Pollut 195:325–333. https://doi.org/10.1007/s11270-008-9749-1. (PMID: 10.1007/s11270-008-9749-1)
Corbi JJ, Bernegossi AC, Moura L, Felipe MC, Issa CG, Silva MRLE, Gorni GR (2019) Chironomus sancticaroli (Diptera, Chironomidae) as a sensitive test species: can we rely on its use after repeated generations, under laboratory conditions? Bull Environ Contam Toxicol 102:213–217. https://doi.org/10.1007/s00128-019-02644-8. (PMID: 10.1007/s00128-019-02644-8)
Costa CR, Olivi P, Botta CMR, Espindola ELG (2008) A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Química Nova 31:1820–1830. https://doi.org/10.1590/S0100-40422008000700038. (PMID: 10.1590/S0100-40422008000700038)
Crane M, Delaney P, Mainstone C, Clarke S (1995) Measurement by in situ bioassay of water quality in an agricultural catchment. Water Res 29(11):2441–2448. https://doi.org/10.1016/0043-1354(95)00085-Y. (PMID: 10.1016/0043-1354(95)00085-Y)
Danks HV (1978) Some effects of photoperiod, temperature and food on emergence in three species of Chironomidae (Diptera). Can Entomol 110:289–300. https://doi.org/10.4039/Ent110289-3. (PMID: 10.4039/Ent110289-3)
Daughton CG (2004) Non-regulated water contaminants: emerging research. Environ Impact Assess Rev 24:711–732. https://doi.org/10.1016/j.eiar.2004.06.003. (PMID: 10.1016/j.eiar.2004.06.003)
De Souza Beghelli FG, Lopez-Dovál JC, Rosa AH, Pompêo M, Carlos VM (2018) Lethal and sublethal effects of metal-polluted sediments on Chironomus sancticaroli Strixino and Strixino, 1981. Ecotoxicology 27:286–299. https://doi.org/10.1007/s10646-018-1894-8. (PMID: 10.1007/s10646-018-1894-8)
Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: A review of the literature. Int J Hyg Environ Health 214:442–448. https://doi.org/10.1016/j.ijheh.2011.08.002. (PMID: 10.1016/j.ijheh.2011.08.002)
Dell'acqua MM (2017) Effect of 17α-ethinylestradiol hormone on the biology of Chironomus sancticaroli (Chironomidae, Diptera), . 73 p. Dissertation (master degree) - School of Engineering of São Carlos, University of São Paulo, São Carlos 2017.
Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in Vitro Biological Screening. Environ Sci Technol 32(11):1549–1558. (PMID: 10.1021/es9707973)
Di Veroli A, Santoro F, Pallottini M, Selvaggi R, Scardazza F, Cappelletti D, Goretti E (2014) Deformities of chironomid larvae and heavy metal pollution: From laboratory to field studies. Chemosphere 112:9–17. https://doi.org/10.1016/j.chemosphere.2014.03.053. (PMID: 10.1016/j.chemosphere.2014.03.053)
Dornfeld CB, Rodgher S, Negri RG, Espíndola ELG, Daam MA (2018) Chironomus sancticaroli (Diptera, Chironomidae) as a sensitive tropical test species in laboratory Bioassays Evaluating Metals (Copper and Cadmium) and Field Testing. Arch Environ Contam Toxicol 76:42–50. https://doi.org/10.1007/s00244-018-0575-1. (PMID: 10.1007/s00244-018-0575-1)
Dussault EB, Balakrishnan VK, Solomon KR, Sibley PK (2008) Chronic toxicity of the synthetic hormone 17α-Ethinylestradiol to Chironomus tentans and Hyalella azteca. Environmental Toxicology and Chemistry: An International Journal 27(12):2521–2529. https://doi.org/10.1897/08-005.1. (PMID: 10.1897/08-005.1)
Edwards QA, Kulikov SM, Garner-O’Neale LD (2015) Caffeine in surface and wastewaters in Barbados, West Indies. Springerplus 4:57. https://doi.org/10.1186/s40064-015-0809-x. (PMID: 10.1186/s40064-015-0809-x)
Erickson BE (2002) Analyzing the ignored environmental contaminants. Environ Sci Technol 36:140A–145A. https://doi.org/10.1021/es022497d. (PMID: 10.1021/es022497d)
Felipe MC (2019) Toxicity bioassays using aquatic invertebrates on exposure to Linear Sulphonated Alkylbenzene. 2019. 215 f. Thesis (Doctor of Science) - São Carlos School of Engineering, University of São Paulo, São Carlos.
Felipe MC, Bernegossi AC, Castro GB, Pinheiro FR, Nadai BL, Cardoso-Silva BN, Corbi JJ (2020) The use of an Allonais inaequalis reproduction test as an ecotoxicological bioassay. Ecotoxicology 29:634–638. https://doi.org/10.1007/s10646-020-02232-1. (PMID: 10.1007/s10646-020-02232-1)
Filho RWR, Luvizotto-Santos R, Vieira EM (2007) Poluentes emergentes como desreguladores endócrinos. J Brazilian Soc Ecotoxicol 2:283–288. https://doi.org/10.5132/jbse.2007.03.012. (PMID: 10.5132/jbse.2007.03.012)
Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD, Barber LB, Thurman ME (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II Untreated drinking water sources. Sci Total Environ 402:201–216. https://doi.org/10.1016/j.scitotenv.2008.02.021. (PMID: 10.1016/j.scitotenv.2008.02.021)
Fonseca AL, Rocha O (2004) Laboratory cultures of the native species Chironomus xanthus Rempel, 1939 (Diptera, Chironomidae). Acta Limnol Bras 16:153–161.
Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140. https://doi.org/10.1016/j.biocon.2005.05.002. (PMID: 10.1016/j.biocon.2005.05.002)
Glassmeyer ST, Furlong ET, Kolpin DW, Batt AL, Benson R, Boone JS, Conerly O, Donohue MJ, King DN, Kostich MS, Mash HE, Pfaller SL, Schenck KM, Simmons JE, Varughese EA, Vesper SJ, Villegas EN, Wilson VS (2017) Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci Total Environ 581–582:909–922. https://doi.org/10.1016/j.scitotenv.2016.12.004. (PMID: 10.1016/j.scitotenv.2016.12.004)
Gonçalves ES, Rodrigues SV, Silva-Filho EV (2017) The use of caffeine as a chemical marker of domestic wastewater contamination in surface waters: seasonal and spatial variations in Teresópolis, Brazil. Revista Ambiente & Água 12(2):192–202. https://doi.org/10.4136/ambi-agua.1974. (PMID: 10.4136/ambi-agua.1974)
Granatto CF, Macedo TZ, Gerosa LE, Sakamoto IK, Silva EL, Varesche MBA (2019) Scale-up evaluation of anaerobic degradation of linear alkylbenzene sulfonate from sanitary sewage in expanded granular sludge bed reactor. Int Biodeterior Biodegradation 138:23–32. https://doi.org/10.1016/j.ibiod.2018.12.010. (PMID: 10.1016/j.ibiod.2018.12.010)
Hammer Ø, Harper D, Ryan P (2001) PAST: Paleontological statistics software package for education and data analysis.
Harris CA, Brian JV, Pojana G, Lamoree M, Booy P, Marcomini A, Sumpter JP (2009) The influence of a surfactant, linear alkylbenzene sulfonate, on the estrogenic response to a mixture of (xeno)estrogens in vitro and in vivo. Aquat Toxicol 91:95–98. https://doi.org/10.1016/J.AQUATOX.2008.09.014. (PMID: 10.1016/J.AQUATOX.2008.09.014)
HERA (2013) Human and environmental risk assessment on ingredients of household cleaning products. Linear Alkylbenzene Sulphonate.
Hwang H, Fisher SW, Kim K, Landrum PF, Larson RJ, Versteeg DJ (2003) Assessing the toxicity of dodecylbenzene sulfonate to the midge Chironomus riparius using body residues as the dose metric. Environ Toxicol Chem 22(2):302–312. https://doi.org/10.1002/etc.5620220210. (PMID: 10.1002/etc.5620220210)
INCTAA (2014) -Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas. Cafeína em águas de abastecimento público no Brasil Editora Cubo São Carlos.
Jagoda A, Żukowski W, Dąbrowska B (2015) Investigations of the presence of caffeine in the Rudawa River, Kraków. Poland Environ Monit Assess 187:566. https://doi.org/10.1007/s10661-015-4760-7. (PMID: 10.1007/s10661-015-4760-7)
Knee KL, Gossett R, Boehm AB, Paytan A (2010) Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai (Hawaii, USA). Mar Pollut Bull 60:1376–1382. https://doi.org/10.1016/j.marpolbul.2010.04.019. (PMID: 10.1016/j.marpolbul.2010.04.019)
Kolpin DW, Meyer MT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999 - 2000: A National Reconnaissance. Environ Sci Technol 36:1202–1211. (PMID: 10.1021/es011055j)
Lacey R, Watzin MC, Mcintosh AW (1999) Sediment organic matter content as a confounding factor in toxicity tests with Chironomus tentans. Environmental Toxicology and Chemistry: An International Journal 18:231–236. https://doi.org/10.1002/etc.5620180219. (PMID: 10.1002/etc.5620180219)
Larcher S, Yargeau V (2013) Biodegradation of 17a-ethinylestradiol by heterotrophic bacteria. Environ Pollut 173:17–22. https://doi.org/10.1016/j.envpol.2012.10.028. (PMID: 10.1016/j.envpol.2012.10.028)
Lawrence JR, Swerhone GD, Wassenaar LI, Neu TR (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51(8):655–669. https://doi.org/10.1139/w05-047. (PMID: 10.1139/w05-047)
Lee S-B, Choi J (2007) Effects of bisphenol A and ethynylestradiol exposure on enzyme activities, growth and development in the fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Ecotoxicol Environ Saf 68(1):84–90. https://doi.org/10.1016/j.ecoenv.2006.07.003. (PMID: 10.1016/j.ecoenv.2006.07.003)
Lopez de Alda MJ, Díaz-Cruz S, Petrovic M, Barceló D (2003) Liquid chromatography–(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment. J Chromatogr A 1000:503–526. https://doi.org/10.1016/S0021-9673(03)00509-0. (PMID: 10.1016/S0021-9673(03)00509-0)
Machado KC, Grassi MT, Vidal C, Pescara IC, Jardim WF, Fernandes AN, Sodré FF, Almeida FV, Santana JS, Canela MC, Nunes CRO, Bichinho KM, Severo FJR (2016) A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil. Sci Total Environ 572:138–146. https://doi.org/10.1016/j.scitotenv.2016.07.210. (PMID: 10.1016/j.scitotenv.2016.07.210)
Mäenpää K, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77(3):329–338. https://doi.org/10.1016/j.aquatox.2006.01.002. (PMID: 10.1016/j.aquatox.2006.01.002)
de Magalhães DP, da Ferrão-Filho AS (2008) A ecotoxicologia como ferramenta no biomonitoramento de ecossistemas aquáticos. Oecologia Aust 12:355–381. https://doi.org/10.4257/oeco.2008.1203.02. (PMID: 10.4257/oeco.2008.1203.02)
Maki AW, Bishop WE (1979) Acute toxicity studies of surfactants to Daphnia magna and Daphnia pulex. Arch Environ Contam Toxicol 8(5):599–612. (PMID: 10.1007/BF01055040)
Matsunaga T, Ueki F, Obata K, Tajima H, Tanaka T, Takeyama H, Goda Y, Fujimoto S (2003) Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Anal Chim Acta 475:75–83. https://doi.org/10.1016/S0003-2670(02)01036-X. (PMID: 10.1016/S0003-2670(02)01036-X)
Meigen JW (1804) Klassifikation und Beschreibung der Europäischen zweiflügeligen Insekten (Diptera). Reichard, Braunschweig 1(1):152.
Montagner CC, Jardim WF, Braz J (2011) Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River, Sao Paulo State (Brazil). Chem Soc 22:1452.
Mungray AK, Kumar P (2009) Fate of linear alkylbenzene sulfonates in the environment: A review. Int Biodeterior Biodegrad 63:981–987. https://doi.org/10.1016/j.ibiod.2009.03.012. (PMID: 10.1016/j.ibiod.2009.03.012)
Novelli A, Vieira BH, Cordeiro D, Cappelini LTD, Vieira EM, Espíndola ELG (2012) Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere 86:36–40. https://doi.org/10.1016/j.chemosphere.2011.08.047. (PMID: 10.1016/j.chemosphere.2011.08.047)
Nyakeya K, Nyamora JM, Raburu PO, Masese FO, Kerich CE, Magondu EW (2018) Life cycle responses of the midge of Chironomus species (Diptera: Chironomidae) to sugarcane and paper pulp effluents exposure. African Journal of Education, Science and Technology 4(3):1–13.
OECD (2010) Organization for Economic Co-operation and Development Test No. 233 - Sediment-Water Chironomid Life-Cycle toxicity test using spiked water or spiked sediment.
OECD (2011) Organization for Economic Co-operation and Development Test No 235: Chironomus sp., Acute Immobilisation Test. OECD Publishing. https://doi.org/10.1787/9789264067394-eng.
OECD (2015) Organization for Economic Co-operation and Development Test No. 240 - Medaka extended one generation reproduction test. OECD Publishing. https://doi.org/10.1787/9789264242258-en258-en.
OECD SIDS 2005 Organisation for Economic Co-operation and Development. Linear Alkylbenzene Sulfonate (LAS). SIDS Initial Assess Rep 1–357.
Penteado JCP, El Seoud OA, Carvalho LRF (2006) Alquilbenzeno Sulfonato Linear: Uma abordagem ambiental e analítica. Quim Nova 29:1038–1046. (PMID: 10.1590/S0100-40422006000500025)
Perales JA, Manzano MA, Sales D, Quiroga JA (1999) Biodegradation kinetics of LAS in river water. Int Biodeterior Biodegradation 43:155–160. https://doi.org/10.1016/S0964-8305(99)00044-X. (PMID: 10.1016/S0964-8305(99)00044-X)
Peris M, Recatalá L, Micó C, Sánchez R, Sánchez J (2008) Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region. Water Air Soil Pollut 192(1-4):25–37. (PMID: 10.1007/s11270-008-9631-1)
Pires A, Almeida Â, Correia J, Calisto V, Schneider RJ, Esteves VI, Soares AMVM, Figueira E, Freitas R (2016) Long-term exposure to caffeine and carbamazepine: Impacts on the regenerative capacity of the polychaete Diopatra neapolitana. Chemosphere 146:565–573. https://doi.org/10.1016/j.chemosphere.2015.12.035. (PMID: 10.1016/j.chemosphere.2015.12.035)
Pittinger CA, Woltering DM, Masters JA (1989) Bioavailability of sediment-sorbed and aqueous surfactants to Chironomus riparius (midge). Environ Toxicol Chem 8:1023–1033. https://doi.org/10.1002/etc.5620081108. (PMID: 10.1002/etc.5620081108)
Printes LB, Fernandes MN, Espíndola ELG (2011) Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicol Environ Saf 74:424–430. https://doi.org/10.1016/j.ecoenv.2010.10.033. (PMID: 10.1016/j.ecoenv.2010.10.033)
Rasband W (2018) ImageJ [WWW Document]. Natl. Institutes Heal.
Rebechi D, Navarro-Silva MA (2012) Setting the reference for the use of Chironomus sancticaroli (Diptera: Chironomidae) as bioindicator: Ontogenetic pattern of larval head structures. Zool https://doi.org/10.1590/S1984-46702012000200009.
Richardi VS, Vicentini M, Morais GS, Rebechi D, da Silva TA, Fávaro LF, Navarro-Silva MA (2018) Effects of phenanthrene on different levels of biological organization in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli (Diptera: Chironomidae). Environ Pollut 242:277–287. https://doi.org/10.1016/j.envpol.2018.06.091. (PMID: 10.1016/j.envpol.2018.06.091)
Shi W, Wang L, Rousseau DPL, Lens PNL (2010) Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environ Sci Pollut Res 17:824–833. https://doi.org/10.1007/s11356-010-0301-7. (PMID: 10.1007/s11356-010-0301-7)
Shobanov NA, Butler MG, Kiknadze II (1999) Palearctic and Nearctic Chironomus (Camptochironomus) tentans (Fabricius) are different species (Diptera: Chironomidae). Insect Systematics & Evolution 30(3):311–322. https://doi.org/10.1163/187631200x00147. (PMID: 10.1163/187631200x00147)
Sibley PK, Benoit DA, Ankley GT (1997) The significance of growth in Chironomus tentans sediment toxicity tests: relationship to reproduction and demographic endpoints. Environmental Toxicology and Chemistry: An International Journal 16:336–345. https://doi.org/10.1002/etc.5620160232. (PMID: 10.1002/etc.5620160232)
Silva LG, Gavazza S, Florencio L, Kato MT (2017) Quantificação de alquilbenzeno linear sulfonato em estação de tratamento de efluentes e rios por cromatografia líquida de alta eficiência e extração em fase sólida. Quim. Nova 40:334–341. https://doi.org/10.21577/0100-4042.20170007. (PMID: 10.21577/0100-4042.20170007)
Snyder SA, Wert EC, Lei HD, Westerhoff P, Yoon Y (2007) Removal of EDCs and pharmaceuticals in drinking and reuse treatment processes. American Water Works Association Research Foundation Report, Denver.
Sodré FF, Montagner CC, Locatelli MAF, Jardim WF (2007) Ocorrência de Interferentes Endócrinos e Produtos Farmacêuticos em Águas Superficiais da Região de Campinas (SP, Brasil). J Brazilian Soc Ecotoxicol 2:187–196. https://doi.org/10.5132/jbse.2007.02.012. (PMID: 10.5132/jbse.2007.02.012)
Sonnenschein C, Soto AM (1998) An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 65:143–150. https://doi.org/10.1016/S0960-0760(98)00027-2. (PMID: 10.1016/S0960-0760(98)00027-2)
Sposito JC, Montagner C, Casado M, Navarro-Martín L, Solórzano JC, Piña B, Grisolia AB (2018) Emerging contaminants on Brazilian rivers: ocurrece and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere 209:696–704. (PMID: 10.1016/j.chemosphere.2018.06.046)
Strixino ST, Strixino G (1981) Nova espécie do gênero Chironomus Meigen do sul do Brasil (Diptera: Chironomidae). Revista Brasileira de Entomologia 25:333–340.
Strixino G, Trivinho-Strixino S (1985) A temperatura e o desenvolvimento larval de Chironomus sancticaroli (Diptera: Chironomidae). Rev Bras Zool 28:177–180 1. (PMID: 10.1590/S0101-81751985000400003)
Swedmark M, Braaten B, Emanuelsson E, Granmo A (1971) Biological effects of surface active agents on marine animals. Mar Biol 9(3):183–201. https://doi.org/10.1007/BF00351378. (PMID: 10.1007/BF00351378)
Tatcher TO, Santer JF (1966) Acute toxicity of LAS to various fish species. Proc 21st Purdue Ind Conf Series No 121 50:996–1002.
Taylor MJ (1985) Effect of diet on the sensitivity of Daphnia magna to linear alkylbenzene sulfonate. In Aquatic Toxicology and Hazard Assessment: Seventh Symposium (Edited by Cardwell R. D., Purdy R. and Bahner R. C.), pp. 53-72. ASTM STP 854, American Society for Testing and Materials, Philadelphia.
Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants – I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1-2):81–90. (PMID: 10.1016/S0048-9697(98)00334-9)
Tomita RY, Beyruth Z (2002) Toxicologia de agrotóxico em ambiente aquático. Biológico 64:135–142.
Torres NH, Aguiar MM, Ferreira LFR, Américo JHP, Machado AM, Cavalcanti EB, Tornisielo VL (2015) Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. Environ Monit Assess 187:2–13. (PMID: 10.1007/s10661-015-4626-z)
Trivinho-Strixino S, (1980). Estudos sobre a fecundidade de Chironomus sancarlensis sp. n. (Diptera: Chironomidae). Universidade de São Paulo.
Trivinho-Strixino S, Strixino G (1982) Ciclo de vida de Chironomus sancticaroli. Rev Bras Entomol 26:183–189.
USEPA (2000) United States Environmental Protection Agency Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates 1–9.
Vedamanikam VJ (2009) Formation of resistance in the Chironomus plumosus to four pesticides over 45 generations. Toxicol Environ Chem 91(1):187–194. https://doi.org/10.1080/02772240802075196. (PMID: 10.1080/02772240802075196)
Vogt C, Belz D, Galluba S, Nowak C, Oetken M, Oehlmann J (2007a) Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera) - baseline experiments for future multi-generation studies. J Environ Sci Health Part A 42(1):1–9. https://doi.org/10.1080/10934520601015255. (PMID: 10.1080/10934520601015255)
Vogt C, Nowak C, Diogo JB, Oetken M, Schwenk K, Oehlmann J (2007b) Multi-generation studies with Chironomus riparius - effects of low tributyltin concentrations on life history parameters and genetic diversity. Chemosphere 67(11):2192–2200. https://doi.org/10.1016/j.chemosphere.2006.12.025. (PMID: 10.1016/j.chemosphere.2006.12.025)
Vogt C, Langer-Jaesrich M, Elsässer O, Schmitt C, Van Dongen S, Köhler HR, Oehlmann J, Nowak C (2013) Effects of inbreeding on mouthpart deformities of Chironomus riparius under sublethal pesticide exposure. Environ Toxicol Chem 32(2):423–425. https://doi.org/10.1002/etc.2071. (PMID: 10.1002/etc.2071)
Wang C, Shi H, Adams CD, Gamagedara S, Stayton I, Timmons T, Ma Y (2011) Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res 45:1818–1828. https://doi.org/10.1016/j.watres.2010.11.043. (PMID: 10.1016/j.watres.2010.11.043)
Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q (2012) Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79:122–128. https://doi.org/10.1016/j.ecoenv.2011.12.016. (PMID: 10.1016/j.ecoenv.2011.12.016)
Watts MM, Pascoe D, Carroll K (2001) Chronic exposure to 17α-ethinylestradiol and bisphenol A-effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diptera: Chironomidae). Aquat Toxicol 55(1-2):113–124. https://doi.org/10.1016/s0166-445x(01)00148-5. (PMID: 10.1016/s0166-445x(01)00148-5)
Watts MM, Pascoe D, Carroll K (2003) Exposure to 17α-ethinylestradiol and bisphenol A - Effects on larval moulting and mouthpart structure of Chironomus riparius. Ecotoxicol Environ Saf 54:207–215. https://doi.org/10.1016/S0147-6513(02)00029-5. (PMID: 10.1016/S0147-6513(02)00029-5)
You L, Nguyen VT, Pal A, Chen H, He Y, Reinhard M, Gin KYH (2015) Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors. Sci Total Environ 536:955–963. https://doi.org/10.1016/j.scitotenv.2015.06.041. (PMID: 10.1016/j.scitotenv.2015.06.041)
Zagatto PA, Bertoletti E (2008) Ecotoxicologia Aquática: Princípios e Aplicações, 2nd edn. RiMa, São Carlos.
Zha J, Sun L, Zhou Y, Spear PA, Ma M, Wang Z (2008) Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicol Appl Pharmacol 226(3):298–308. https://doi.org/10.1016/j.taap.2007.10.006. (PMID: 10.1016/j.taap.2007.10.006)
معلومات مُعتمدة: 140055/2016-9 National Council for Scientific and Technological Development; 168736/2018-7 National Council for Scientific and Technological Development; 88887.353028/2019-00 Brazilian Coordination for the Improvement of Higher Education Personnel; PROEX-001 Brazilian Coordination for the Improvement of Higher Education Personnel; 2016/24622-9 São Paulo Research Foundation; 2015/06246-7 São Paulo Research Foundation; 2018/21901-0 São Paulo Research Foundation
فهرسة مساهمة: Keywords: Aquatic systems; Chironomus; Ecotoxicology; Long-term
المشرفين على المادة: 0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20210323 Date Completed: 20210728 Latest Revision: 20210728
رمز التحديث: 20240628
DOI: 10.1007/s11356-021-13250-9
PMID: 33754272
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-021-13250-9