دورية أكاديمية

Longitudinal Effects of Left Ventricular Assist Device Implantation on Global and Domain-Specific Cognitive Function.

التفاصيل البيبلوغرافية
العنوان: Longitudinal Effects of Left Ventricular Assist Device Implantation on Global and Domain-Specific Cognitive Function.
المؤلفون: Faulkner KM, Chien CV, Denfeld QE, Gelow JM, Lyons KS, Grady KL, Mudd JO, Lee CS
المصدر: The Journal of cardiovascular nursing [J Cardiovasc Nurs] 2022 Jan-Feb 01; Vol. 37 (1), pp. 31-40.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 8703516 Publication Model: Print Cited Medium: Internet ISSN: 1550-5049 (Electronic) Linking ISSN: 08894655 NLM ISO Abbreviation: J Cardiovasc Nurs Subsets: MEDLINE
أسماء مطبوعة: Publication: 2003- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: [Frederick, MD : Aspen Publishers, c1986-
مواضيع طبية MeSH: Cognitive Dysfunction*/complications , Heart Failure*/complications , Heart-Assist Devices*, Adult ; Cognition ; Executive Function ; Humans ; Retrospective Studies ; Treatment Outcome ; Ventricular Function, Left
مستخلص: Background: Left ventricular assist devices (LVADs) are a common treatment of advanced heart failure, but cognitive dysfunction, which is common in heart failure, could limit the ability to perform postimplantation LVAD care. Implantation of an LVAD has been associated with improved cerebral perfusion and may improve cognitive function post implantation.
Objective: The aim of this study was to quantify longitudinal change in cognitive function after LVAD implantation.
Methods: A secondary analysis of data on 101 adults was completed to evaluate cognitive function before implantation and again at 1, 3, and 6 months post implantation of an LVAD. Latent growth curve modeling was conducted to characterize change over time. Serial versions of the Montreal Cognitive Assessment were used to measure overall (total) cognitive function and function in 6 cognitive domains.
Result: There was moderate, nonlinear improvement from preimplantation to 6 months post implantation in Montreal Cognitive Assessment total score (Hedges' g = 0.50) and in short-term memory (Hedges' g = 0.64). There also were small, nonlinear improvements in visuospatial ability, executive function, and attention from preimplantation to 6 months post implantation (Hedges' g = 0.20-0.28). The greatest improvements were observed in the first 3 months after implantation and were followed by smaller, sustained improvements or no additional significant change.
Conclusions: Implantation of an LVAD is associated with significant, nonlinear improvement in short-term memory and global cognitive function, with the most significant improvements occurring in the first 3 months after implantation. Clinicians should anticipate improvements in cognitive function after LVAD implantation and modify postimplantation education to maximize effectiveness of LVAD self-care.
(Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.)
References: Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492.
Abouezzeddine OF, Redfield MM. Who has advanced heart failure?: definition and epidemiology. Congest Heart Fail. 2011;17(4):160–168.
Chaudhry SP, Stewart GC. Advanced heart failure: prevalence, natural history, and prognosis. Heart Fail Clin. 2016;12(3):323–333.
Correale M, Monaco I, Tricarico L, et al. Advanced heart failure: non-pharmacological approach. Heart Fail Rev. 2019;24:779–791.
Crespo-Leiro MG, Metra M, Lund LH, et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20(11):1505–1535.
Wilson SR, Givertz MM, Stewart GC, Mudge GH Jr. Ventricular assist devices the challenges of outpatient management. J Am Coll Cardiol. 2009;54(18):1647–1659.
Bui QM, Allen LA, LeMond L, Brambatti M, Adler E. Psychosocial evaluation of candidates for heart transplant and ventricular assist devices: beyond the current consensus. Circ Heart Fail. 2019;12(7):e006058.
Cannon JA, Moffitt P, Perez-Moreno AC, et al. Cognitive impairment and heart failure: systematic review and meta-analysis. J Card Fail. 2017;23(6):464–475.
Currie K, Rideout A, Lindsay G, Harkness K. The association between mild cognitive impairment and self-care in adults with chronic heart failure: a systematic review and narrative synthesis. J Cardiovasc Nurs. 2015;30(5):382–393.
Hjelm CM, Brostrom A, Riegel B, Arestedt K, Stromberg A. The association between cognitive function and self-care in patients with chronic heart failure. Heart Lung. 2015;44(2):113–119.
Riley PL, Arslanian-Engoren C. Cognitive dysfunction and self-care decision making in chronic heart failure: a review of the literature. Eur J Cardiovasc Nurs. 2013;12(6):505–511.
Ampadu J, Morley JE. Heart failure and cognitive dysfunction. Int J Cardiol. 2015;178:12–23.
Murad K, Goff DC Jr., Morgan TM, et al. Burden of comorbidities and functional and cognitive impairments in elderly patients at the initial diagnosis of heart failure and their impact on total mortality: the cardiovascular health study. JACC Heart Fail. 2015;3(7):542–550.
Lee CS, Gelow JM, Bidwell JT, et al. Blunted responses to heart failure symptoms in adults with mild cognitive dysfunction. J Cardiovasc Nurs. 2013;28(6):534–540.
Gelow JM, Mudd JO, Chien CV, Lee CS. Usefulness of cognitive dysfunction in heart failure to predict cardiovascular risk at 180 days. Am J Cardiol. 2015;115(6):778–782.
Vogels RL, Scheltens P, Schroeder-Tanka JM, Weinstein HC. Cognitive impairment in heart failure: a systematic review of the literature. Eur J Heart Fail. 2007;9(5):440–449.
Leto L, Feola M. Cognitive impairment in heart failure patients. J Geriatr Cardiol. 2014;11(4):316–328.
Bennett SJ, Sauve MJ, Shaw RM. A conceptual model of cognitive deficits in chronic heart failure. Journal of Nursing Scholarship. 2005;37(3):222–228.
Zimpfer D, Wieselthaler G, Czerny M, et al. Neurocognitive function in patients with ventricular assist devices: a comparison of pulsatile and continuous blood flow devices. ASAIO Journal. 2006;52(1):24–27.
Petrucci RJ, Wright S, Naka Y, et al. Neurocognitive assessments in advanced heart failure patients receiving continuous-flow left ventricular assist devices. The Journal of Heart and Lung Transplantation. 2009;28(6):542–549.
Petrucci RJ, Rogers JG, Blue L, et al. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. The Journal of Heart and Lung Transplantation. 2012;31(1):27–36.
Mapelli D, Cavazzana A, Cavalli C, et al. Clinical psychological and neuropsychological issues with left ventricular assist devices (LVADs). Annals of Cardiothoracic Surgery. 2014;3(5):480–489.
Jha SR, Hannu MK, Newton PJ, et al. Reversibility of frailty after bridge-to-transplant ventricular assist device implantation or heart transplantation. Transplant Direct. 2017;3(7):e167.
Fendler TJ, Spertus JA, Gosch KL, et al. Incidence and predictors of cognitive decline in patients with left ventricular assist devices. Circ Cardiovasc Qual Outcomes. 2015;8(3):285–291.
Bhat G, Yost G, Mahoney E. Cognitive function and left ventricular assist device implantation. The Journal of Heart and Lung Transplantation. 2015;34(11):1398–1405.
Cornwell WK III, Tarumi T, Aengevaeren VL, et al. Effect of pulsatile and nonpulsatile flow on cerebral perfusion in patients with left ventricular assist devices. The Journal of Heart and Lung Transplantation. 2014;33(12):1295–1303.
Slaughter MS, Sobieski MA, Gallagher C, Dia M, Silver MA. Low incidence of neurologic events during long-term support with the HeartMate XVE left ventricular assist device. Tex Heart Inst J. 2008;35(3):245–249.
Spiegel DR, Chen V. A case of postoperative cognitive decline, with a highly elevated C-reactive protein, status post left ventricular assist device insertion: a review of the neuroinflammatory hypothesis of delirium. Innovations in Clinical Neuroscience. 2012;9(1):35–41.
Dew MA, DiMartini AF, Dobbels F, et al. The 2018 ISHLT/APM/AST/ICCAC/STSW Recommendations for the Psychosocial Evaluation of Adult Cardiothoracic Transplant Candidates and Candidates for Long-term Mechanical Circulatory Support. Psychosomatics. 2018;59(5):415–440.
Lee CS, Mudd JO, Gelow JM, et al. Background and design of the profiling biobehavioral responses to mechanical support in advanced heart failure study. J Cardiovasc Nurs. 2014;29(5):405–415.
Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699.
Grimm KJ, Ram N. Latent growth and dynamic structural equation models. Annu Rev Clin Psychol. 2018;14(1):55–89.
Curran PJ, Obeidat K, Losardo D. Twelve frequently asked questions about growth curve modeling. J Cogn Dev. 2010;11(2):121–136.
Burant CJ. Latent growth curve models: tracking changes over time. Int J Aging Hum Dev. 2016;82(4):336–350.
Chou CP, Yang D, Pentz MA, Hser Y-I. Piecewise growth curve modeling approach for longitudinal prevention study. Computational Statistics & Data Analysis. 2004;46(2):213–225.
Curran PJ, Harford TC, Muthen BO. The relation between heavy alcohol use and bar patronage: a latent growth model. J Stud Alcohol. 1996;57(4):410–418.
Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159.
Muthen LK, Muthén BO. Mplus Version 8 User's Guide. Los Angeles, CA: Muthen & Muthen; 2017.
Sauër AM, Kalkman C, van Dijk D. Postoperative cognitive decline. J Anesth. 2009;23(2):256–259.
Glumac S, Kardum G, Karanovic N. Postoperative cognitive decline after cardiac surgery: a narrative review of current knowledge in 2019. Medical Science Monitor. 2019;25:3262–3270.
Caro MA, Rosenthal JL, Kendall K, Pozuelo L, Funk MC. What the psychiatrist needs to know about ventricular assist devices: a comprehensive review. Psychosomatics. 2016;57(3):229–237.
Lezak MD, Howieson DB, Biger ED, Tranel D. Neuropsychological Assessment. 5th ed. New York, NY: Oxford University Press; 2012.
Kato N, Jaarsma T, Ben Gal T. Learning self-care after left ventricular assist device implantation. Curr Heart Fail Rep. 2014;11(3):290–298.
Norman GR, Sloan JA, Wyrwich KW. The truly remarkable universality of half a standard deviation: confirmation through another look. Expert Rev Pharmacoecon Outcomes Res. 2004;4(5):581–585.
Kato NP, Jaarsma T, Casida JM, Lee CS, Stromberg A, Gal TB. Development of an instrument for measuring self-care behaviors after left ventricular assist device implantation. Prog Transplant. 2019;29(4):335–343.
Widmar SB, Dietrich MS, Minnick AF. How self-care education in ventricular assist device programs is organized and provided: a national study. Heart Lung. 2014;43(1):25–31.
Kumar R, Woo MA, Birrer BV, et al. Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis. 2009;33(2):236–242.
Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM. Regional brain gray matter loss in heart failure. J Appl Physiol (1985). 2003;95(2):677–684.
Woo MA, Kumar R, Macey PM, Fonarow GC, Harper RM. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail. 2009;15(3):214–223.
Pressler SJ. Cognitive functioning and chronic heart failure: a review of the literature (2002–July 2007). J Cardiovasc Nurs. 2008;23(3):239–249.
Riegel B, Moser DK, Anker SD, et al. State of the science: promoting self-care in persons with heart failure: a scientific statement from the American Heart Association. Circulation. 2009;120(12):1141–1163.
معلومات مُعتمدة: R01 NR013492 United States NR NINR NIH HHS; K12 HD043488 United States HD NICHD NIH HHS
تواريخ الأحداث: Date Created: 20210323 Date Completed: 20220324 Latest Revision: 20220324
رمز التحديث: 20240628
DOI: 10.1097/JCN.0000000000000709
PMID: 33755380
قاعدة البيانات: MEDLINE
الوصف
تدمد:1550-5049
DOI:10.1097/JCN.0000000000000709