دورية أكاديمية

Range edges of North American marine species are tracking temperature over decades.

التفاصيل البيبلوغرافية
العنوان: Range edges of North American marine species are tracking temperature over decades.
المؤلفون: Fredston A; Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA.; Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA., Pinsky M; Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA., Selden RL; Department of Biological Sciences, Wellesley College, Science Center, Wellesley, MA, USA., Szuwalski C; Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA., Thorson JT; Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA., Gaines SD; Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA., Halpern BS; Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA.; National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, CA, USA.
المصدر: Global change biology [Glob Chang Biol] 2021 Jul; Vol. 27 (13), pp. 3145-3156. Date of Electronic Publication: 2021 Apr 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Climate Change* , Invertebrates*, Animals ; Fishes ; North America ; Temperature
مستخلص: Understanding the dynamics of species range edges in the modern era is key to addressing fundamental biogeographic questions about abiotic and biotic drivers of species distributions. Range edges are where colonization and extirpation processes unfold, and so these dynamics are also important to understand for effective natural resource management and conservation. However, few studies to date have analyzed time series of range edge positions in the context of climate change, in part because range edges are difficult to detect. We first quantified positions for 165 range edges of marine fishes and invertebrates from three U.S. continental shelf regions using up to five decades of survey data and a spatiotemporal model to account for sampling and measurement variability. We then analyzed whether those range edges maintained their edge thermal niche-the temperatures found at the range edge position-over time. A large majority of range edges (88%) maintained either summer or winter temperature extremes at the range edge over the study period, and most maintained both (76%), although not all of those range edges shifted in space. However, we also found numerous range edges-particularly poleward edges and edges in the region that experienced the most warming-that did not shift at all, shifted further than predicted by temperature alone, or shifted opposite the direction expected, underscoring the multiplicity of factors that drive changes in range edge positions. This study suggests that range edges of temperate marine species have largely maintained the same edge thermal niche during periods of rapid change and provides a blueprint for testing whether and to what degree species range edges track temperature in general.
(© 2021 John Wiley & Sons Ltd.)
References: Angert, A. L., Bontrager, M. G., & Ågren, J. (2020). What do we really know about adaptation at range edges? Annual Review of Ecology, Evolution, and Systematics, 51(1), 341-361. https://doi.org/10.1146/annurev-ecolsys-012120-091002.
Barbeaux, S. J., & Hollowed, A. B. (2018). Ontogeny matters: Climate variability and effects on fish distribution in the eastern Bering Sea. Fisheries Oceanography, 27(1), 1-15. https://doi.org/10.1111/fog.12229.
Bell, R. J., Richardson, D. E., Hare, J. A., Lynch, P. D., & Fratantoni, P. S. (2015). Disentangling the effects of climate, abundance, and size on the distribution of marine fish: An example based on four stocks from the Northeast US shelf. ICES Journal of Marine Science, 72(5), 1311-1322. https://doi.org/10.1093/icesjms/fsu217.
Blanchard, J. L., Mills, C., Jennings, S., Fox, C. J., Rackham, B. D., Eastwood, P. D., & O’Brien, C. M. (2005). Distribution-abundance relationships for North Sea Atlantic cod (Gadus morhua): Observation versus theory. Canadian Journal of Fisheries and Aquatic Sciences, 62(9), 2001-2009. https://doi.org/10.1139/f05-109.
Brown, C. J., O’Connor, M. I., Poloczanska, E. S., Schoeman, D. S., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Pandolfi, J. M., Parmesan, C., & Richardson, A. J. (2016). Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Global Change Biology, 22(4), 1548-1560. https://doi.org/10.1111/gcb.13184.
Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., Kiessling, W., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., & Richardson, A. J. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science, 334(6056), 652-655. https://doi.org/10.1126/science.1210288.
Cahill, A. E., Aiello-Lammens, M. E., Caitlin Fisher-Reid, M., Hua, X., Karanewsky, C. J., Ryu, H. Y., Sbeglia, G. C., Spagnolo, F., Waldron, J. B., & Wiens, J. J. (2014). Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. Journal of Biogeography, 41(3), 429-442. https://doi.org/10.1111/jbi.12231.
Cao, J., Thorson, J. T., Richards, R. A., & Chen, Y. (2017). Spatiotemporal index standardization improves the stock assessment of northern shrimp in the Gulf of Maine. Canadian Journal of Fisheries and Aquatic Sciences, 74(11), 1781-1793. https://doi.org/10.1139/cjfas-2016-0137.
Chamberlain, S. A., & Szöcs, E. (2013). taxize: Taxonomic search and retrieval in R. F1000Research, 2, 191. https://doi.org/10.12688/f1000research.2-191.v2.
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024-1026. https://doi.org/10.1126/science.1206432.
Coachman, L. K. (1986). Circulation, water masses, and fluxes on the southeastern Bering Sea shelf. Continental Shelf Research, 5(1), 23-108. https://doi.org/10.1016/0278-4343(86)90011-7.
Connell, J. H. (1961). Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs, 31(1), 61-104. https://doi.org/10.2307/1950746.
Dahlke, F. T., Wohlrab, S., Butzin, M., & Pörtner, H.-O. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science, 369(6499), 65-70. https://doi.org/10.1126/science.aaz3658.
Dana, J. D. (1853). On an isothermal oceanic chart, illustrating the geographical distribution of marine animals. The American Journal of Science and Arts, 16, 314-327.
Day, P. B., Stuart-Smith, R. D., Edgar, G. J., & Bates, A. E. (2018). Species’ thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. Diversity and Distributions, 24(8), 1036-1046. https://doi.org/10.1111/ddi.12753.
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O., & Huey, R. B. (2015). Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132-1135. https://doi.org/10.1126/science.aaa1605.
Ellingsen, K. E., Yoccoz, N. G., Tveraa, T., Frank, K. T., Johannesen, E., Anderson, M. J., Dolgov, A. V., & Shackell, N. L. (2020). The rise of a marine generalist predator and the fall of beta diversity. Global Change Biology, 26(5), 2897-2907. https://doi.org/10.1111/gcb.15027.
Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D., & Halpern, B. S. (2020). Cold range edges of marine fishes track climate change better than warm edges. Global Change Biology, 26(5), 2908-2922. https://doi.org/10.1111/gcb.15035.
Fuchs, H. L., Chant, R. J., Hunter, E. J., Curchitser, E. N., Gerbi, G. P., & Chen, E. Y. (2020). Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nature Climate Change, 10(11), 1052-1056. https://doi.org/10.1038/s41558-020-0894-x.
Fukami, T. (2015). Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46(1), 1-23. https://doi.org/10.1146/annurev-ecolsys-110411-160340.
Godsoe, W., Jankowski, J., Holt, R. D., & Gravel, D. (2017). Integrating biogeography with contemporary niche theory. Trends in Ecology & Evolution, 32(7), 488-499. https://doi.org/10.1016/j.tree.2017.03.008.
Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2018). rstanarm: Bayesian applied regression modeling via Stan (2.17.4) [Computer software]. http://mc-stan.org/.
Groner, M. L., Shields, J. D., Landers, D. F., Swenarton, J., & Hoenig, J. M. (2018). Rising temperatures, molting phenology, and epizootic shell disease in the American lobster. The American Naturalist, 192(5), E163-E177. https://doi.org/10.1086/699478.
Hare, J. A., Alexander, M. A., Fogarty, M. J., Williams, E. H., & Scott, J. D. (2010). Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecological Applications, 20(2), 452-464. https://doi.org/10.1890/08-1863.1.
Hickling, R., Roy, D. B., Hill, J. K., & Thomas, C. D. (2005). A northward shift of range margins in British Odonata. Global Change Biology, 11(3), 502-506. https://doi.org/10.1111/j.1365-2486.2005.00904.x.
Hiddink, J. G., Burrows, M. T., & García Molinos, J. (2015). Temperature tracking by North Sea benthic invertebrates in response to climate change. Global Change Biology, 21(1), 117-129. https://doi.org/10.1111/gcb.12726.
HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R., & Theobald, E. J. (2013). How will biotic interactions influence climate change-induced range shifts? Annals of the New York Academy of Sciences, 112-125, https://doi.org/10.1111/nyas.12182.
Howard, E. M., Penn, J. L., Frenzel, H., Seibel, B. A., Bianchi, D., Renault, L., Kessouri, F., Sutula, M. A., McWilliams, J. C., & Deutsch, C. (2020). Climate-driven aerobic habitat loss in the California Current System. Science Advances, 6(20), eaay3188. https://doi.org/10.1126/sciadv.aay3188.
Hutchins, L. W. (1947). The bases for temperature zonation in geographical distribution. Ecological Monographs, 17(3), 325-335. https://doi.org/10.2307/1948663.
Keller, A. A., Wallace, J. R., & Methot, R. D.. (2017). The Northwest Fisheries Science Center’s West Coast Groundfish Bottom Trawl Survey: History, design, and description. U.S. Department of Commerce, NOAA Technical Memorandum(NMFS-NWFSC-136). https://doi.org/10.7289/v5/tm-nwfsc-136.
Kordas, R. L., Harley, C. D. G., & O’Connor, M. I. (2011). Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology, 400(1-2), 218-226. https://doi.org/10.1016/j.jembe.2011.02.029.
La Sorte, F. A., & Jetz, W. (2012). Tracking of climatic niche boundaries under recent climate change. Journal of Animal Ecology, 81(4), 914-925. https://doi.org/10.1111/j.1365-2656.2012.01958.x.
Lauth, R. R., & Conner, J. (2014). Results of the 2011 Eastern Bering Sea Continental Shelf Bottom Trawl Survey of Groundfish and Invertebrate Fauna. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-AFSC-266, 176.
Leising, A. W., Schroeder, I. D., Bograd, S. J., Abell, J., Durazo, R., Gaxiola-Castro, G., Bjorkstedt, E. P., Field, J., Sakuma, K., Robertson, R. R., Goericke, R., Peterson, W. T., Brodeur, R. D., Barceló, C., Auth, T. D., Daly, E. A., Suryan, R. M., Gladics, A., Porquez, J. … Warzybok, P. (2015). State of the California Current 2014-15: Impacts of the Warm-Water "Blob". http://ir.library.oregonstate.edu/xmlui/handle/1957/58482.
Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J., & Grenouillet, G. (2020). Species better track climate warming in the oceans than on land. Nature Ecology & Evolution, 1-16, https://doi.org/10.1038/s41559-020-1198-2.
Lenoir, J., & Svenning, J.-C. (2015). Climate-related range shifts - A global multidimensional synthesis and new research directions. Ecography, 38(1), 15-28. https://doi.org/10.1111/ecog.00967.
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052-1055. https://doi.org/10.1038/nature08649.
Louthan, A. M., Doak, D. F., & Angert, A. L. (2015). Where and when do species interactions set range limits? Trends in Ecology & Evolution, 30(12), 780-792. https://doi.org/10.1016/j.tree.2015.09.011.
Ma, G., Rudolf, V. H. W., & Ma, C. (2015). Extreme temperature events alter demographic rates, relative fitness, and community structure. Global Change Biology, 21(5), 1794-1808. https://doi.org/10.1111/gcb.12654.
MacArthur, R. H. (1972). Geographical ecology: Patterns in the distribution of species. Princeton University Press.
Maureaud, A., Frelat, R., Pécuchet, L., Shackell, N., Mérigot, B., Pinsky, M. L., Amador, K., Anderson, S. C., Arkhipkin, A., Auber, A., Barri, I., Bell, R. J., Belmaker, J., Beukhof, E., Camara, M. L., Guevara-Carrasco, R., Choi, J., Christensen, H. T., Conner, J., … Thorson, J. (2021). Are we ready to track climate-driven shifts in marine species across international boundaries? - A global survey of scientific bottom trawl data. Global Change Biology, 27(2), 220-236. https://doi.org/10.1111/gcb.15404.
McCain, C., Szewczyk, T., & Knight, K. B. (2016). Population variability complicates the accurate detection of climate change responses. Global Change Biology, 22(6), 2081-2093. https://doi.org/10.1111/gcb.13211.
McHenry, J., Welch, H., Lester, S. E., & Saba, V. (2019). Projecting marine species range shifts from only temperature can mask climate vulnerability. Global Change Biology, 25(12), 4208-4221. https://doi.org/10.1111/gcb.14828.
McMahan, M. D., & Grabowski, J. H. (2019). Nonconsumptive effects of a range-expanding predator on juvenile lobster (Homarus americanus) population dynamics. Ecosphere, 10(10), https://doi.org/10.1002/ecs2.2867.
Molinos, J. G., Burrows, M. T., & Poloczanska, E. S. (2017). Ocean currents modify the coupling between climate change and biogeographical shifts. Scientific Reports, 7(1), 1332. https://doi.org/10.1038/s41598-017-01309-y.
Morley, J. W., Batt, R. D., & Pinsky, M. L. (2017). Marine assemblages respond rapidly to winter climate variability. Global Change Biology, 23(7), 2590-2601. https://doi.org/10.1111/gcb.13578.
Nichol, D. G., Kotwicki, S., Wilderbuer, T. K., Lauth, R. R., & Ianelli, J. N. (2019). Availability of yellowfin sole Limanda aspera to the eastern Bering Sea trawl survey and its effect on estimates of survey biomass. Fisheries Research, 211, 319-330. https://doi.org/10.1016/j.fishres.2018.11.017.
NOAA NCEI. (2018). SST, Daily optimum interpolation (OI) (2.0) [Computer software]. https://www.ncdc.noaa.gov/oisst.
Ortiz, I., Aydin, K., Hermann, A. J., Gibson, G. A., Punt, A. E., Wiese, F. K., Eisner, L. B., Ferm, N., Buckley, T. W., Moffitt, E. A., Ianelli, J. N., Murphy, J., Dalton, M., Cheng, W., Wang, M., Hedstrom, K., Bond, N. A., Curchitser, E. N., & Boyd, C. (2016). Climate to fish: Synthesizing field work, data and models in a 39-year retrospective analysis of seasonal processes on the eastern Bering Sea shelf and slope. Deep Sea Research Part II: Topical Studies in Oceanography, 134, 390-412. https://doi.org/10.1016/j.dsr2.2016.07.009.
Parmesan, C., Gaines, S., Gonzalez, L., Kaufman, D. M., Kingsolver, J., Peterson, A. T., & Sagarin, R. (2005). Empirical perspectives on species borders: From traditional biogeography to global change. Oikos, 108(1), 58-75. https://doi.org/10.1111/j.0030-1299.2005.13150.x.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A., & Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736), 579-583. https://doi.org/10.1038/21181.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42. https://doi.org/10.1038/nature01286.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., … Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214. https://doi.org/10.1126/science.aai9214.
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569(7754), 108. https://doi.org/10.1038/s41586-019-1132-4.
Pinsky, M. L., Selden, R. L., & Kitchel, Z. J. (2020). Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Annual Review of Marine Science, 12(1), https://doi.org/10.1146/annurev-marine-010419-010916.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341(6151), 1239-1242.
Politis, P., Galbraith, J., Kostovick, P., & Brown, R. (2014). Northeast Fisheries Science Center Bottom Trawl Survey Protocols for the NOAA Ship Henry B. Bigelow (US Dept Commer, Northeast Fish Sci Cent Ref Doc. 14-06; p. 138). National Marine Fisheries Service. https://www.nefsc.noaa.gov/publications/crd/crd1406/.
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., & Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919-925. https://doi.org/10.1038/nclimate1958.
Poloczanska, E. S., Smith, S., Fauconnet, L., Healy, J., Tibbetts, I. R., Burrows, M. T., & Richardson, A. J. (2011). Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50years of rapid warming. Journal of Experimental Marine Biology and Ecology, 400(1), 145-154. https://doi.org/10.1016/j.jembe.2011.02.018.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Rayner, N. A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14). https://doi.org/10.1029/2002JD002670.
Sax, D. F., & Gaines, S. D. (2003). Species diversity: From global decreases to local increases. Trends in Ecology & Evolution, 18(11), 561-566. https://doi.org/10.1016/S0169-5347(03)00224-6.
Scheffers, B. R., Meester, L. D., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H. M., Pearce-Kelly, P., Kovacs, K. M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T. G., Mora, C., Bickford, D., & Watson, J. E. M. (2016). The broad footprint of climate change from genes to biomes to people. Science, 354(6313), aaf7671. https://doi.org/10.1126/science.aaf7671.
Selden, R. L., Thorson, J. T., Samhouri, J. F., Bograd, S. J., Brodie, S., Carroll, G., Haltuch, M. A., Hazen, E. L., Holsman, K. K., Pinsky, M. L., Tolimieri, N., & Willis-Norton, E. (2020). Coupled changes in biomass and distribution drive trends in availability of fish stocks to US West Coast ports. ICES Journal of Marine Science, 77(1), 188-199. https://doi.org/10.1093/icesjms/fsz211.
Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40(1), 415-436. https://doi.org/10.1146/annurev.ecolsys.110308.120317.
Shelton, A. O., Thorson, J. T., Ward, E. J., & Feist, B. E. (2014). Spatial semiparametric models improve estimates of species abundance and distribution. Canadian Journal of Fisheries and Aquatic Sciences, 71(11), 1655-1666. https://doi.org/10.1139/cjfas-2013-0508.
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Gupta, A. S., Payne, B. L., & Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4), 306. https://doi.org/10.1038/s41558-019-0412-1.
Stabeno, P. J., Bond, N. A., Kachel, N. B., Salo, S. A., & Schumacher, J. D. (2001). On the temporal variability of the physical environment over the south-eastern Bering Sea. Fisheries Oceanography, 10(1), 81-98. https://doi.org/10.1046/j.1365-2419.2001.00157.x.
Stuart, M., & Pinsky, M. (2019). Ocean adapt 2019 release. Zenodo. https://doi.org/10.5281/zenodo.3890214.
Stuart-Smith, R. D., Edgar, G. J., & Bates, A. E. (2017). Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecology & Evolution, 1(12), 1846-1852. https://doi.org/10.1038/s41559-017-0353-x.
Stuble, K. L., Bewick, S., Fisher, M., Forister, M. L., Harrison, S. P., Shapiro, A. M., Latimer, A. M., & Fox, L. R. (2021). The promise and the perils of resurveying to understand global change impacts. Ecological Monographs. https://doi.org/10.1002/ecm.1435.
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2(9), 686-690. https://doi.org/10.1038/nclimate1539.
Sunday, J., Bennett, J. M., Calosi, P., Clusella-Trullas, S., Gravel, S., Hargreaves, A. L., Leiva, F. P., Verberk, W. C. E. P., Olalla-Tárraga, M. Á., & Morales-Castilla, I. (2019). Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1778), 20190036. https://doi.org/10.1098/rstb.2019.0036.
Sunday, J. M., Pecl, G. T., Frusher, S., Hobday, A. J., Hill, N., Holbrook, N. J., Edgar, G. J., Stuart-Smith, R., Barrett, N., Wernberg, T., Watson, R. A., Smale, D. A., Fulton, E. A., Slawinski, D., Feng, M., Radford, B. T., Thompson, P. A., & Bates, A. E. (2015). Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecology Letters, 18(9), 944-953. https://doi.org/10.1111/ele.12474.
Tanaka, K. R., Van Houtan, K. S., Mailander, E., Dias, B. S., Galginaitis, C., O’Sullivan, J., Lowe, C. G., & Jorgensen, S. J. (2021). North Pacific warming shifts the juvenile range of a marine apex predator. Scientific Reports, 11(1), 3373. https://doi.org/10.1038/s41598-021-82424-9.
Thorson, J. (2015). FishData: Compile fish survey data (1.0). [Computer software].
Thorson, J. T. (2019). Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fisheries Research, 210, 143-161. https://doi.org/10.1016/j.fishres.2018.10.013.
Thorson, J. T., & Barnett, L. A. K. (2017). Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of Marine Science, 74(5), 1311-1321. https://doi.org/10.1093/icesjms/fsw193.
Thorson, J. T., Munch, S. B., & Swain, D. P. (2017). Estimating partial regulation in spatiotemporal models of community dynamics. Ecology, 98(5), 1277-1289. https://doi.org/10.1002/ecy.1760.
Thorson, J. T., Pinsky, M. L., & Ward, E. J. (2016). Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods in Ecology and Evolution, 7(8), 990-1002. https://doi.org/10.1111/2041-210X.12567.
Thorson, J. T., Rindorf, A., Gao, J., Hanselman, D. H., & Winker, H. (2016). Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes. Proceedings of the Royal Society B: Biological Sciences, 283(1840), 20161853. https://doi.org/10.1098/rspb.2016.1853.
Thorson, J. T., Stewart, I. J., & Punt, A. E. (2011). Accounting for fish shoals in single-and multi-species survey data using mixture distribution models. Canadian Journal of Fisheries and Aquatic Sciences, 68(9), 1681-1693.
Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Peer, G., Singer, A., Bridle, J. R., Crozier, L. G., De Meester, L., Godsoe, W., Gonzalez, A., Hellmann, J. J., Holt, R. D., Huth, A., Johst, K., Krug, C. B., Leadley, P. W., Palmer, S. C. F., Pantel, J. H., … Travis, J. M. J. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466. https://doi.org/10.1126/science.aad8466.
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman and Hall/CRC.
Zacherl, D., Gaines, S. D., & Lonhart, S. I. (2003). The limits to biogeographical distributions: Insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852). Journal of Biogeography, 30(6), 913-924. https://doi.org/10.1046/j.1365-2699.2003.00899.x.
Zhu, K., Woodall, C. W., & Clark, J. S. (2012). Failure to migrate: Lack of tree range expansion in response to climate change. Global Change Biology, 18(3), 1042-1052. https://doi.org/10.1111/j.1365-2486.2011.02571.x.
فهرسة مساهمة: Keywords: biogeography; climate change; global warming; range limit; range margin; thermal niche; thermal tolerance
تواريخ الأحداث: Date Created: 20210324 Date Completed: 20210806 Latest Revision: 20210806
رمز التحديث: 20240628
DOI: 10.1111/gcb.15614
PMID: 33759274
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.15614