دورية أكاديمية

Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites.

التفاصيل البيبلوغرافية
العنوان: Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites.
المؤلفون: Schwenzer JA; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany., Hellmann T; Technical University of Darmstadt, Surface Science Laboratory, Department of Materials and Earth Sciences, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany., Nejand BA; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany., Hu H; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany., Abzieher T; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany., Schackmar F; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.; InnovationLab, Speyererstrasse 4, 69115 Heidelberg, Germany., Hossain IM; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany., Fassl P; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany., Mayer T; Technical University of Darmstadt, Surface Science Laboratory, Department of Materials and Earth Sciences, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany., Jaegermann W; Technical University of Darmstadt, Surface Science Laboratory, Department of Materials and Earth Sciences, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany., Lemmer U; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.; InnovationLab, Speyererstrasse 4, 69115 Heidelberg, Germany., Paetzold UW; Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany.; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
المصدر: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2021 Apr 07; Vol. 13 (13), pp. 15292-15304. Date of Electronic Publication: 2021 Mar 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101504991 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1944-8252 (Electronic) Linking ISSN: 19448244 NLM ISO Abbreviation: ACS Appl Mater Interfaces Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Chemical Society
مستخلص: One of the great challenges of hybrid organic-inorganic perovskite photovoltaics is the material's stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI 3 ) and formamidinium cesium lead iodide (FACsPbI 3 ) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.
فهرسة مساهمة: Keywords: degradation; organometal halide perovskites; perovskite solar cells; photovoltaics; stability; temperature; thin film
تواريخ الأحداث: Date Created: 20210325 Latest Revision: 20210408
رمز التحديث: 20240628
DOI: 10.1021/acsami.1c01547
PMID: 33764733
قاعدة البيانات: MEDLINE
الوصف
تدمد:1944-8252
DOI:10.1021/acsami.1c01547