دورية أكاديمية

Two-step functional screen on multiple proteinaceous substrates reveals temperature-robust proteases with a broad-substrate range.

التفاصيل البيبلوغرافية
العنوان: Two-step functional screen on multiple proteinaceous substrates reveals temperature-robust proteases with a broad-substrate range.
المؤلفون: García-Moyano A; NORCE Norwegian Research Centre, Thormøhlens gate 55, 5006, Bergen, Norway., Diaz Y; NORCE Norwegian Research Centre, Thormøhlens gate 55, 5006, Bergen, Norway., Navarro J; Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain., Almendral D; Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain., Puntervoll P; NORCE Norwegian Research Centre, Thormøhlens gate 55, 5006, Bergen, Norway., Ferrer M; Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain., Bjerga GEK; NORCE Norwegian Research Centre, Thormøhlens gate 55, 5006, Bergen, Norway. grbj@norceresearch.no.
المصدر: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2021 Apr; Vol. 105 (8), pp. 3195-3209. Date of Electronic Publication: 2021 Mar 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer International, c1984-
مواضيع طبية MeSH: Metagenome* , Peptide Hydrolases*/genetics, Animals ; Bacteria/genetics ; Endopeptidases ; Temperature
مستخلص: To support the bio-based industry in development of environment-friendly processes and products, an optimal toolbox of biocatalysts is key. Although functional screen of (meta)genomic libraries may potentially contribute to identifying new enzymes, the discovery of new enzymes meeting industry compliance demands is still challenging. This is particularly noticeable in the case of proteases, for which the reports of metagenome-derived proteases with industrial applicability are surprisingly limited. Indeed, proteolytic clones have been typically assessed by its sole activity on casein or skim milk and limited to mild screening conditions. Here, we demonstrate the use of six industry-relevant animal and plant by-products, namely bone, feather, blood meals, gelatin, gluten, and zein, as complementary substrates in functional screens and show the utility of temperature as a screening parameter to potentially discover new broad-substrate range and robust proteases for the biorefinery industry. By targeting 340,000 clones from two libraries of pooled isolates of mesophilic and thermophilic marine bacteria and two libraries of microbial communities inhabiting marine environments, we identified proteases in four of eleven selected clones that showed activity against all substrates herein tested after prolonged incubation at 55 °C. Following sequencing, in silico analysis and recombinant expression in Escherichia coli, one functional protease, 58% identical at sequence level to previously reported homologs, was found to readily hydrolyze highly insoluble zein at temperatures up to 50 °C and pH 9-11. It is derived from a bacterial group whose ability to degrade zein was unknown. This study reports a two-step screen resulting in identification of a new marine metagenome-derived protease with zein-hydrolytic properties at common biomass processing temperatures that could be useful for the modern biorefinery industry. KEY POINTS: • A two-step multi-substrate strategy for discovery of robust proteases. • Feasible approach for shortening enzyme optimization to industrial demands. • A new temperature-tolerant protease efficiently hydrolyzes insoluble zein.
References: Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2. (PMID: 10.1016/S0022-2836(05)80360-2)
Anderson TJ, Lamsal BP (2011) REVIEW: zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem J 88:159–173. https://doi.org/10.1094/CCHEM-06-10-0091. (PMID: 10.1094/CCHEM-06-10-0091)
Apolinar–Hernández MM, Peña–Ramírez YJ, Pérez-Rueda E, Canto-Canché BB, De los Santos-Briones C, O’Connor-Sánchez A (2016) Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water. Gene 593:154–161. https://doi.org/10.1016/j.gene.2016.08.009. (PMID: 10.1016/j.gene.2016.08.00927522038)
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75. (PMID: 10.1186/1471-2164-9-7522656982265698)
Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornés J, Borin S, Richter M, Del Pozo MV, Cappello S, Gertler C, Genovese M, Denaro R, Martínez-Martínez M, Fodelianakis S, Amer RA, Bigazzi D, Han X, Chen J, Chernikova TN, Golyshina OV, Mahjoubi M, Jaouanil A, Benzha F, Magagnini M, Hussein E, Al-Horani F, Cherif A, Blaghen M, Abdel-Fattah YR, Kalogerakis N, Barbas C, Malkawi HI, Golyshin PN, Yakimov MM, Daffonchio D, Ferrer M (2015) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 5:11651. https://doi.org/10.1038/srep11651. (PMID: 10.1038/srep11651261191834484246)
Belles AM, Montville TJ, Wasserman BP (2000) Enzymatic removal of zeins from the surface of maize starch granules. J Ind Microbiol Biotechnol 24:71–74. https://doi.org/10.1038/sj.jim.2900767. (PMID: 10.1038/sj.jim.2900767)
Biver S, Portetelle D, Vandenbol M (2013) Characterization of a new oxidant-stable serine protease isolated by functional metagenomics. Springerplus 2:410. https://doi.org/10.1186/2193-1801-2-410. (PMID: 10.1186/2193-1801-2-410240240963765597)
Bjerga GEK, Arsın H, Larsen Ø, Puntervoll P, Kleivdal HT (2016) A rapid solubility-optimized screening procedure for recombinant subtilisins in E. coli. J Biotechnol 222:38–46. https://doi.org/10.1016/J.JBIOTEC.2016.02.009.
Cárcel-Márquez J, Flores A, Martín-Cabello G, Santero E, Camacho EM (2019) Development of an inducible lytic system for functional metagenomic screening. Sci Rep 9:3887. https://doi.org/10.1038/s41598-019-40470-4. (PMID: 10.1038/s41598-019-40470-4308467626405747)
Chapman J, Ismail A, Dinu C (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8:238. https://doi.org/10.3390/catal8060238. (PMID: 10.3390/catal8060238)
de Barros EG, Larkins BA (1990) Purification and characterization of zein-degrading proteases from endosperm of germinating maize seeds. Plant Physiol 94:297–303. https://doi.org/10.1104/pp.94.1.297. (PMID: 10.1104/pp.94.1.297166677011077224)
Devi SG, Fathima AA, Sanitha M, Iyappan S, Curtis WR, Ramya M (2016) Expression and characterization of alkaline protease from the metagenomic library of tannery activated sludge. J Biosci Bioeng 122:694–700. https://doi.org/10.1016/j.jbiosc.2016.05.012. (PMID: 10.1016/j.jbiosc.2016.05.01227323930)
Díaz-Gómez JL, Ortíz-Martínez M, Aguilar O, García-Lara S, Castorena-Torres F (2018) Antioxidant activity of zein hydrolysates from Zea species and their cytotoxic effects in a hepatic cell culture. Molecules 23. https://doi.org/10.3390/molecules23020312.
Dong X, Strous M (2019) An integrated pipeline for annotation and visualization of metagenomic contigs. Front Genet 10:999. https://doi.org/10.3389/fgene.2019.00999. (PMID: 10.3389/fgene.2019.00999316814296803454)
Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34. https://doi.org/10.1111/1751-7915.12309. (PMID: 10.1111/1751-7915.1230926275154)
Ferrer M, Méndez-García C, Bargiela R, Chow J, Alonso S, García-Moyano A, Bjerga GEK, Steen IH, Schwabe T, Blom C, Vester J, Weckbecker A, Shahgaldian P, de Carvalho CCCR, Meskys R, Zanaroli G, Glöckner FO, Fernández-Guerra A, Thambisetty S, de la Calle F, Golyshina OV, Yakimov MM, Jaeger K-E, Yakunin AF, Streit WR, McMeel O, Calewaert J-B, Tonné N, Golyshin PN, INMARE Consortium TI (2019) Decoding the ocean’s microbiological secrets for marine enzyme biodiscovery. FEMS Microbiol Lett 366. https://doi.org/10.1093/femsle/fny285.
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. https://doi.org/10.1093/nar/gkt1223. (PMID: 10.1093/nar/gkt122324288371)
Global Protease Market Report (2019) History and Forecast 2014-2025, Breakdown Data by Manufacturers, Key Regions, Types and Application.
Gong B-L, Mao R-Q, Xiao Y, Jia M-L, Zhong X-L, Liu Y, Xu P-L, Li G (2017) Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzym Microb Technol 106:97–105. https://doi.org/10.1016/j.enzmictec.2017.06.015. (PMID: 10.1016/j.enzmictec.2017.06.015)
Healy FG, Ray RM, Aldrich HC, Wilkie AC, Ingram LO, Shanmugam KT (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol 43:667–674. https://doi.org/10.1007/BF00164771. (PMID: 10.1007/BF001647717546604)
Hussein AH, Lisowska BK, Leak DJ (2015) The genus Geobacillus and their biotechnological potential. In: Advances in applied microbiology. Elsevier Academic Press Inc, pp 1–48.
Iqbal HA, Craig JW, Brady SF (2014) Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans. FEMS Microbiol Lett 354:19–26. https://doi.org/10.1111/1574-6968.12431. (PMID: 10.1111/1574-6968.12431246611784028719)
Jiang C, Zhang L, Li F, Meng C, Zeng R, Deng J, Shen P, Ou Q, Wu B (2017) Characterization of a metagenome-derived protease from contaminated agricultural soil microorganisms and its random mutagenesis. Folia Microbiol (Praha) 62:499–508. https://doi.org/10.1007/s12223-017-0522-y. (PMID: 10.1007/s12223-017-0522-y)
Jin D, Liu X, Zheng X, Wang X, He J (2016) Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem 204:427–436. https://doi.org/10.1016/J.FOODCHEM.2016.02.119. (PMID: 10.1016/J.FOODCHEM.2016.02.11926988521)
Jones BV, Sun F, Marchesi JR (2007) Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives. Lett Appl Microbiol 45:418–420. https://doi.org/10.1111/j.1472-765X.2007.02202.x. (PMID: 10.1111/j.1472-765X.2007.02202.x17897385)
Kasaai MR (2018) Zein and zein-based nano-materials for food and nutrition applications: a review. Trends Food Sci Technol 79:184–197. https://doi.org/10.1016/j.tifs.2018.07.015. (PMID: 10.1016/j.tifs.2018.07.015)
Kennedy J, O’Leary ND, Kiran GS, Morrissey JP, O’Gara F, Selvin J, Dobson ADW (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111:787–799. https://doi.org/10.1111/j.1365-2672.2011.05106.x. (PMID: 10.1111/j.1365-2672.2011.05106.x21777355)
Kong B, Xiong YL (2006) Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J Agric Food Chem 54:6059–6068. https://doi.org/10.1021/jf060632q. (PMID: 10.1021/jf060632q16881717)
Kong X, Zhou H, Qian H (2007) Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem 102:759–763. https://doi.org/10.1016/J.FOODCHEM.2006.06.062. (PMID: 10.1016/J.FOODCHEM.2006.06.062)
Lee MH, Lee S-W (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform 11:114–120. https://doi.org/10.5808/GI.2013.11.3.114. (PMID: 10.5808/GI.2013.11.3.114241244063794083)
Lee D-G, Jeon JH, Jang MK, Kim NY, Lee JH, Lee J-H, Kim S-J, Kim G-D, Lee S-H (2007) Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnol Lett 29:465–472. https://doi.org/10.1007/s10529-006-9263-8. (PMID: 10.1007/s10529-006-9263-817203343)
Leis B, Heinze S, Angelov A, Pham VTT, Thürmer A, Jebbar M, Golyshin PN, Streit WR, Daniel R, Liebl W (2015) Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon. Front Bioeng Biotechnol 3:95. https://doi.org/10.3389/fbioe.2015.00095. (PMID: 10.3389/fbioe.2015.00095261915254486847)
Li Q (2019) Progress in microbial degradation of feather waste. Front Microbiol 10:2717. https://doi.org/10.3389/fmicb.2019.02717. (PMID: 10.3389/fmicb.2019.02717318669576906142)
Liang Q, Chalamaiah M, Ren X, Ma H, Wu J (2018) Identification of new anti-inflammatory peptides from zein hydrolysate after simulated gastrointestinal digestion and transport in Caco-2 cells. J Agric Food Chem 66:1114–1120. https://doi.org/10.1021/acs.jafc.7b04562. (PMID: 10.1021/acs.jafc.7b0456229192497)
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. https://doi.org/10.1093/nar/gkq1189. (PMID: 10.1093/nar/gkq118921109532)
Martínez-Martínez M, Coscolín C, Santiago G, Chow J, Stogios PJ, Bargiela R, Gertler C, Navarro-Fernández J, Bollinger A, Thies S, Méndez-García C, Popovic A, Brown G, Chernikova TN, García-Moyano A, Bjerga GEK, Pérez-García P, Hai T, Del Pozo MV, Stokke R, Steen IH, Cui H, Xu X, Nocek BP, Alcaide M, Distaso M, Mesa V, Peláez AI, Sánchez J, Buchholz PCF, Pleiss J, Fernández-Guerra A, Glöckner FO, Golyshina OV, Yakimov MM, Savchenko A, Jaeger K-E, Yakunin AF, Streit WR, Golyshin PN, Guallar V, Ferrer M, The INMARE Consortium TI (2018) Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem Biol 13:225–234. https://doi.org/10.1021/acschembio.7b00996. (PMID: 10.1021/acschembio.7b0099629182315)
Maruthamuthu M, Jiménez DJ, Stevens P, van Elsas JD (2016) A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. BMC Genomics 17:86. https://doi.org/10.1186/s12864-016-2404-0. (PMID: 10.1186/s12864-016-2404-0268227854730625)
Maurer K-H (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334. https://doi.org/10.1016/J.COPBIO.2004.06.005. (PMID: 10.1016/J.COPBIO.2004.06.00515296930)
Mistry VV (2006) Chymosin in cheese making. In: Food biochemistry and food processing. Blackwell Publishing, Ames, pp 241–252.
Miyaji T, Otta Y, Nakagawa T, Watanabe T, Niimura Y, Tomizuka N (2006) Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1. Lett Appl Microbiol 42:242–247. https://doi.org/10.1111/j.1472-765X.2005.01851.x.
Molitor R, Bollinger A, Kubicki S, Loeschcke A, Jaeger K, Thies S (2020) Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species. Microb Biotechnol 13:274–284. https://doi.org/10.1111/1751-7915.13418. (PMID: 10.1111/1751-7915.1341831016871)
Morris LS, Marchesi JR (2015) Current functional metagenomic approaches only expand the existing protease sequence space, but does not presently add any novelty to it. Curr Microbiol 70:19–26. https://doi.org/10.1007/s00284-014-0677-6. (PMID: 10.1007/s00284-014-0677-625141963)
Morris LS, Evans J, Marchesi JR (2012) A robust plate assay for detection of extracellular microbial protease activity in metagenomic screens and pure cultures. J Microbiol Methods 91:144–146. https://doi.org/10.1016/J.MIMET.2012.08.006. (PMID: 10.1016/J.MIMET.2012.08.00622921428)
Murakami Y, Hirata A (2000) Novel process for enzymatic hydrolysis of proteins in an aqueous two-phase system for the production of peptide mixture. Prep Biochem Biotechnol 30:31–37. https://doi.org/10.1080/10826060008544942. (PMID: 10.1080/1082606000854494210701450)
Neveu J, Regeard C, DuBow MS (2011) Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 91:635–644. https://doi.org/10.1007/s00253-011-3256-9. (PMID: 10.1007/s00253-011-3256-921494865)
Ngara TR, Zhang H (2018) Recent advances in function-based metagenomic screening. Genomics Proteomics Bioinformatics 16:405–415. https://doi.org/10.1016/J.GPB.2018.01.002. (PMID: 10.1016/J.GPB.2018.01.002305972576411959)
Niehaus F, Gabor E, Wieland S, Siegert P, Maurer KH, Eck J (2011) Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases. Microb Biotechnol 4:767–776. https://doi.org/10.1111/j.1751-7915.2011.00279.x. (PMID: 10.1111/j.1751-7915.2011.00279.x218959933815412)
Nielsen H (2017) Predicting secretory proteins with SignalP. Humana Press, New York, pp 59–73.
Onoda A, Suzuki T, Ishizuka H, Sugiyama R, Ariyasu S, Yamamura T (2009) Minimal motif peptide structure of metzincin clan zinc peptidases in micelles. J Pept Sci 15:832–841. https://doi.org/10.1002/psc.1184. (PMID: 10.1002/psc.118419830795)
Pal GK, Suresh PV (2016) Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition. RSC Adv 6:33763–33780. https://doi.org/10.1039/C5RA23316J. (PMID: 10.1039/C5RA23316J)
Pessoa TBA, Rezende RP, Marques E d LS, Pirovani CP, dos Santos TF, dos Santos Gonçalves AC, Romano CC, Dotivo NC, Freitas ACO, Salay LC, Dias JCT (2017) Metagenomic alkaline protease from mangrove sediment. J Basic Microbiol 57:962–973. https://doi.org/10.1002/jobm.201700159. (PMID: 10.1002/jobm.20170015928804942)
Philipps-Wiemann P (2018) Proteases—animal feed. Enzym Hum Anim Nutr:279–297. https://doi.org/10.1016/B978-0-12-805419-2.00014-9.
Pohlner M, Dlugosch L, Wemheuer B, Mills H, Engelen B, Reese BK (2019) The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: a molecular approach to link their distribution to environmental conditions. Front Microbiol 10:659. https://doi.org/10.3389/fmicb.2019.00659.
Popovic A, Hai T, Tchigvintsev A, Hajighasemi M, Nocek B, Khusnutdinova AN, Brown G, Glinos J, Flick R, Skarina T, Chernikova TN, Yim V, Brüls T, Le Paslier D, Yakimov MM, Joachimiak A, Ferrer M, Golyshina OV, Savchenko A, Golyshin PN, Yakunin AF (2017) Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Sci Rep 7:44103. https://doi.org/10.1038/srep44103. (PMID: 10.1038/srep44103282725215341072)
Pushpam P, Rajesh T, Gunasekaran P (2011) Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 1:3. https://doi.org/10.1186/2191-0855-1-3. (PMID: 10.1186/2191-0855-1-3219063263159910)
Ramakrishna V, Rao PR (2005) Purification of acidic protease from the cotyledons of germinating Indian bean (Dolichos lablab L. var lignosus) seeds. Afr J Biotechnol 4:703–707. https://doi.org/10.3923/biotech.2005.365.369. (PMID: 10.3923/biotech.2005.365.369)
Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46:D624–D632. https://doi.org/10.1093/nar/gkx1134. (PMID: 10.1093/nar/gkx113429145643)
Schückel J, Kračun SK, Willats WGT (2016) High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits. J Vis Exp. https://doi.org/10.3791/54286.
Sun J, Li P, Liu Z, Huang W, Mao X (2020) A novel thermostable serine protease from a metagenomic library derived from marine sediments in the East China Sea. Appl Microbiol Biotechnol 104:9229–9238. https://doi.org/10.1007/s00253-020-10879-3. (PMID: 10.1007/s00253-020-10879-332965562)
Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J (2010) Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem 58:587–593. https://doi.org/10.1021/jf9028656. (PMID: 10.1021/jf902865619928919)
Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, Klopp C, Cantarel BL, Coutinho PM, Henrissat B, Leclerc M, Doré J, Monsan P, Remaud-Simeon M, Potocki-Veronese G (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605–1612. https://doi.org/10.1101/gr.108332.110. (PMID: 10.1101/gr.108332.110208414322963823)
Tripathi LP, Sowdhamini R (2008) Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes. BMC Genomics 9:549. https://doi.org/10.1186/1471-2164-9-549. (PMID: 10.1186/1471-2164-9-549190192192605481)
Veith A, Botelho HM, Kindinger F, Gomes CM, Kletzin A (2012) The sulfur oxygenase reductase from the mesophilic bacterium halothiobacillus neapolitanus is a highly active thermozyme. J Bacteriol 194:677–685. https://doi.org/10.1128/JB.06531-11. (PMID: 10.1128/JB.06531-11221395033264067)
Waschkowitz T, Rockstroh S, Daniel R (2009) Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Appl Environ Microbiol 75:2506–2516. https://doi.org/10.1128/AEM.02136-08. (PMID: 10.1128/AEM.02136-08192184122675231)
Wehrle K, Crowe N, van Boeijen I, Arendt EK (1999) Screening methods for the proteolytic breakdown of gluten by lactic acid bacteria and enzyme preparations. Eur Food Res Technol 209:428–433. https://doi.org/10.1007/s002170050521. (PMID: 10.1007/s002170050521)
Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giluliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441. https://doi.org/10.1111/j.1462-5822.2005.00829.x. (PMID: 10.1111/j.1462-5822.2005.00829.x16104865)
Zhang Y, Zhao J, Zeng R (2011) Expression and characterization of a novel mesophilic protease from metagenomic library derived from Antarctic coastal sediment. Extremophiles 15:23–29. https://doi.org/10.1007/s00792-010-0332-5. (PMID: 10.1007/s00792-010-0332-521069403)
Zhu L, Chen J, Tang X, Xiong YL (2008) Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J Agric Food Chem 56:2714–2721. https://doi.org/10.1021/jf703697e. (PMID: 10.1021/jf703697e18376842)
معلومات مُعتمدة: 634486 H2020 European Research Council; 604814 EU ERANET Marine Biotechnology; BIO2017-85522-R Ministerio de Ciencia, Innovación y Universidades; 281406 Norges Forskningsråd
فهرسة مساهمة: Keywords: Agar screen; Functional metagenomics; Protease M10/M12; Zein
المشرفين على المادة: EC 3.4.- (Endopeptidases)
EC 3.4.- (Peptide Hydrolases)
تواريخ الأحداث: Date Created: 20210326 Date Completed: 20210514 Latest Revision: 20210823
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8053189
DOI: 10.1007/s00253-021-11235-9
PMID: 33770243
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0614
DOI:10.1007/s00253-021-11235-9