دورية أكاديمية

Effect of macro-calcification on the failure mechanics of intracranial aneurysmal wall tissue.

التفاصيل البيبلوغرافية
العنوان: Effect of macro-calcification on the failure mechanics of intracranial aneurysmal wall tissue.
المؤلفون: Fortunato RN; Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh, USA., Robertson AM; Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh, USA.; Department of Bioengineering, University of Pittsburgh Pittsburgh, USA., Sang C; Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh, USA., Duan X; Intelligent Automation Group, PNC Bank, University of Pittsburgh Pittsburgh, USA., Maiti S; Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh, USA.; Department of Bioengineering, University of Pittsburgh Pittsburgh, USA.; Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh, USA.
المصدر: Experimental mechanics [Exp Mech] 2021 Jan; Vol. 61 (1), pp. 5-18. Date of Electronic Publication: 2020 Sep 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Society for Experimental Stress Analysis Country of Publication: United States NLM ID: 101469718 Publication Model: Print-Electronic Cited Medium: Print ISSN: 0014-4851 (Print) Linking ISSN: 00144851 NLM ISO Abbreviation: Exp Mech Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Norwell., etc.] : Society for Experimental Stress Analysis, 1961-
مستخلص: Background: Calcification was recently found to be present in the majority of cerebral aneurysms, though how calcification and the presence or absence of co-localized lipid pools affect failure properties is still unknown.
Objective: The primary objective is to quantify the biomechanical effect of a macro-calcification with surrounding Near-Calcification Region (NCR) of varying mechanical properties on tissue failure behavior.
Methods: We utilized a structurally informed finite element model to simulate pre-failure and failure behavior of a human cerebral tissue specimen modeled as a composite containing a macro-calcification and surrounding NCR, embedded in a fiber matrix composite. Data from multiple imaging modalities was combined to quantify the collagen organization and calcification geometry. An idealized parametric model utilizing the calibrated model was used to explore the impact of NCR properties on tissue failure.
Results: Compared to tissue without calcification, peak stress was reduced by 82% and 49% for low modulus (representing lipid pool) and high modulus (simulating increase in calcification size) of the NCR, respectively. Failure process strongly depended on NCR properties with lipid pools blunting the onset of complete failure. When the NCR was calcified, the sample was able to sustain larger overall stress, however the failure process was abrupt with nearly simultaneous failure of the loaded fibers.
Conclusions: Failure of calcified vascular tissue is strongly influenced by the ultrastructure in the vicinity of the calcification. Computational modeling of failure in fibrous soft tissues can be used to understand how pathological changes impact the tissue failure process, with potentially important clinical implications.
References: Acta Biomater. 2018 Oct 15;80:228-236. (PMID: 30218776)
Neurosurg Focus. 2019 Jul 1;47(1):E21. (PMID: 31261126)
J Biomech Eng. 2004 Oct;126(5):657-65. (PMID: 15648819)
J Mater Sci Mater Med. 2011 Jun;22(6):1569-78. (PMID: 21556975)
J Biomech. 2013 Jul 26;46(11):1859-65. (PMID: 23735660)
Lancet. 2003 Jul 12;362(9378):103-10. (PMID: 12867109)
Arterioscler Thromb Vasc Biol. 2019 Oct;39(10):2157-2167. (PMID: 31462093)
J Biomech Eng. 2007 Feb;129(1):105-9. (PMID: 17227104)
Stroke. 2001 Feb;32(2):530-4. (PMID: 11157193)
Biomech Model Mechanobiol. 2019 Dec;18(6):1791-1807. (PMID: 31165377)
AJNR Am J Neuroradiol. 2005 Nov-Dec;26(10):2550-9. (PMID: 16286400)
J Neurosurg. 1984 May;60(5):909-15. (PMID: 6716158)
J Biomed Opt. 2014 Jan;19(1):16007. (PMID: 24407500)
Acta Biomater. 2018 Feb;67:307-318. (PMID: 29225149)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Annu Rev Biomed Eng. 2003;5:251-84. (PMID: 12730082)
J Mech Behav Biomed Mater. 2016 Apr;57:164-74. (PMID: 26717251)
J Biomech. 2016 Jun 14;49(9):1562-1569. (PMID: 27113538)
Stroke. 2009 Jun;40(6):1952-7. (PMID: 19228834)
Stroke. 2013 Sep;44(9):2414-21. (PMID: 23868274)
Lancet Neurol. 2011 Jul;10(7):626-36. (PMID: 21641282)
Ann Biomed Eng. 2015 Jul;43(7):1502-15. (PMID: 25632891)
Biomaterials. 2003 Sep;24(21):3805-13. (PMID: 12818553)
J Biomech Eng. 2018 Jun 1;140(6):. (PMID: 29560496)
Acta Biomater. 2016 Mar 1;32:238-255. (PMID: 26712602)
Eur J Vasc Endovasc Surg. 2013 Nov;46(5):542-8. (PMID: 24091093)
J Biomech. 2012 Mar 15;45(5):762-71. (PMID: 22305290)
J Biomech. 2019 Apr 18;87:1-12. (PMID: 30904335)
N Engl J Med. 1998 Dec 10;339(24):1725-33. (PMID: 9867550)
J Biomed Mater Res A. 2009 Dec 15;91(4):1028-37. (PMID: 19107789)
J Biomech. 2014 Mar 3;47(4):870-7. (PMID: 24503048)
J Biomech. 2018 Apr 11;71:84-93. (PMID: 29544877)
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14678-83. (PMID: 17003118)
Int J Comput Assist Radiol Surg. 2019 Oct;14(10):1795-1804. (PMID: 31054128)
Interface Focus. 2016 Feb 6;6(1):20150090. (PMID: 26855761)
Curr Protoc Cytom. 2019 Jan;87(1):e51. (PMID: 30379412)
Acta Biomater. 2015 Apr;17:125-36. (PMID: 25623592)
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10741-6. (PMID: 23733926)
معلومات مُعتمدة: R01 NS097457 United States NS NINDS NIH HHS; T32 HL076124 United States HL NHLBI NIH HHS
فهرسة مساهمة: Keywords: Biomechanics; Experimentally Motivated; Finite Element Model; Soft Tissue; Structural Modeling; Tissue failure
تواريخ الأحداث: Date Created: 20210329 Latest Revision: 20230730
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7992055
DOI: 10.1007/s11340-020-00657-7
PMID: 33776069
قاعدة البيانات: MEDLINE
الوصف
تدمد:0014-4851
DOI:10.1007/s11340-020-00657-7