دورية أكاديمية

Elucidating the role of hypoxia/reoxygenation in hippocampus-dependent memory impairment: do SK channels play role?

التفاصيل البيبلوغرافية
العنوان: Elucidating the role of hypoxia/reoxygenation in hippocampus-dependent memory impairment: do SK channels play role?
المؤلفون: Kadam M; Neurobiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Developmental Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India., Perveen S; Neurobiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Developmental Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India., Kushwah N; Neurobiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Developmental Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India., Prasad D; Neurobiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Developmental Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India., Panjwani U; Neurobiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Developmental Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India., Kumar B; Neurobiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Developmental Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India., Khan N; Neurobiology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Developmental Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India. nilofarkhan2003@yahoo.com.
المصدر: Experimental brain research [Exp Brain Res] 2021 Jun; Vol. 239 (6), pp. 1747-1763. Date of Electronic Publication: 2021 Mar 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Hippocampus* , Memory Disorders*/etiology, Animals ; Hypoxia ; Rats ; Rats, Sprague-Dawley ; Spatial Memory
مستخلص: Professionals and mountaineers often face the problem of reperfusion injury due to re-oxygenation, upon their return to sea-level after sojourn at high altitude. Small conductance calcium-activated potassium channels (SK channels) have a role in regulating hippocampal synaptic plasticity. However, the role of SK channels under hypoxia-reoxygenation (H/R) is unknown. The present study hypothesized that SK channels play a significant role in H/R induced cognitive dysfunction. Sprague-Dawley rats were exposed to simulated HH (25,000 ft) continuously for 7 days followed by reoxygenation periods 3, 6, 24, 48, 72 and 120 h. It was observed that H/R exposure caused impairment in spatial memory as indicated by increased latency (p < 0.001) and pathlength (p < 0.001). The SK1 channel expression increased upon HH exposure (102.89 ± 7.055), which abrogated upon reoxygenation. HH exposure results in an increase in SK2 (CA3, 297.67 ± 6.69) and SK3 (CA1, 246 ± 5.13) channels which continued to increase gradually upon reoxygenation. The number of pyknotic cells (24 ± 2.03) (p < 0.01) and the expression of caspase-3 increased with HH exposure, which continued in the reoxygenation group (177.795 ± 1.264). Similar pattern was observed in lipid peroxidation (p < 0.001), LDH activity (p < 0.001) and ROS production (p < 0.001). A positive correlation of memory, cell death and oxidative stress indicates that H/R exposure increases oxidative stress coupled with SK channel expression, which may play a role in H/R-induced cognitive decline and neurodegeneration.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Adelman JP, Maylie J, Sah P (2012) Small-Conductance Ca 2+ -Activated K + channels: form and function. Annu Rev Physiol 74:245–269. https://doi.org/10.1146/annurev-physiol-020911-153336. (PMID: 10.1146/annurev-physiol-020911-15333621942705)
Baeyens D, Meier M (1978) Effects of hyperbaric hypoxia on some enzyme systems in the mammalian liver. J Ark Acad Sci 32:22–24.
Ballanyi K (2004) Protective role of neuronal K ATP channels in brain hypoxia. J Exp Biol 207:3201–3212. https://doi.org/10.1242/jeb.01106. (PMID: 10.1242/jeb.0110615299041)
Barhwal K, Singh SB, Hota SK et al (2007) Acetyl- L -Carnitine ameliorates hypobaric hypoxic impairment and spatial memory deficits in rats. Eur J Pharmacol 570:97–107. https://doi.org/10.1016/j.ejphar.2007.05.063. (PMID: 10.1016/j.ejphar.2007.05.06317610872)
Biswal S, Sharma D, Kumar K et al (2016) Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging. Neurobiol Learn Mem 133:157–170. https://doi.org/10.1016/j.nlm.2016.05.011. (PMID: 10.1016/j.nlm.2016.05.01127246251)
Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic by CaV2.3 voltage- sensitive calcium channels located in dendritic spines. Neuron 53:249–260. https://doi.org/10.1016/j.neuron.2006.12.017. (PMID: 10.1016/j.neuron.2006.12.01717224406)
Bock T, Stuart GJ, Martina M (2016) The impact of BK channels on cellular excitability depends on their subcellular location. Front Cell Neurosci 10:1–8. https://doi.org/10.3389/fncel.2016.00206. (PMID: 10.3389/fncel.2016.00206)
Boero JA, Ascher J, Arregui A et al (1999) Increased brain capillaries in chronic hypoxia. J Appl Physiol 86:1211–1219. https://doi.org/10.1152/jappl.1999.86.4.1211. (PMID: 10.1152/jappl.1999.86.4.121110194205)
Bond CT, Maylie J, Adelman JP (1999) Small-conductance calcium-activated potassium channels. Ann N Y Acad Sci 868:370–378. https://doi.org/10.1111/j.1749-6632.1999.tb11298.x. (PMID: 10.1111/j.1749-6632.1999.tb11298.x10414306)
Bond CT, Sprengel R, Bissonnette JM, et al (2000) Respiration and Pafiurition Affected by Conditional Overexpression of the Ca2+- Activated K+ Channel Subunit, SK3.
Bond CT, Maylie J, Adelman JP (2005) SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 15:305–311. https://doi.org/10.1016/j.conb.2005.05.001. (PMID: 10.1016/j.conb.2005.05.00115922588)
Borutaite V, Jekabsone A, Morkuniene R, Brown GC (2003) Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J Mol Cell Cardiol 35:357–366. https://doi.org/10.1016/S0022-2828(03)00005-1. (PMID: 10.1016/S0022-2828(03)00005-112689815)
Boyle LM (2013) A neuroplasticity hypothesis of chronic stress in the basolateral amygdala. Yale J Biol Med 86:117–125. (PMID: 237667333670432)
Brandies R, Brandys Y, Yehuda S (1989) The use of the morris water maze in the study of memory and learning. Int J Neurosci 48:29–69. https://doi.org/10.3109/00207458909002151. (PMID: 10.3109/00207458909002151)
Buchanan KA, Petrovic MM, Chamberlain SEL et al (2010) Facilitation of long-term potentiation by muscarinic M 1 receptors is mediated by inhibition of SK channels. Neuron 68:948–963. https://doi.org/10.1016/j.neuron.2010.11.018. (PMID: 10.1016/j.neuron.2010.11.018211450073003154)
Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta Bioenerg 1366:139–149. https://doi.org/10.1016/S0005-2728(98)00109-1. (PMID: 10.1016/S0005-2728(98)00109-1)
Conforti L, Millhorn DE (2000) Regulation of Shaker- Type Potassium Channels by Hypoxia. In: Lahiri S, Prabhakar NR, Forster RE (eds) Oxygen Sensing. Advances in Experimental Medicine and Biology, 475th edn. Springer, Boston, MA, Boston, pp 265–274.
Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337. (PMID: 10.1080/019262307013203371756248317562483)
Faber ESL, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181–194. https://doi.org/10.1177/1073858403252673. (PMID: 10.1177/107385840325267315065814)
Faber ESL, Sah P (2005) Independent roles of calcium and voltage-dependent potassium currents in controlling spike frequency adaptation in lateral amygdala pyramidal neurons. Eur J Neurosci 22:1627–1635. https://doi.org/10.1111/j.1460-9568.2005.04357.x. (PMID: 10.1111/j.1460-9568.2005.04357.x16197503)
Faber ESL, Sah P (2007) Functions of SK channels in central neurons. Clin Exp Pharmacol Physiol 34:1077–1083. https://doi.org/10.1111/j.1440-1681.2007.04725.x. (PMID: 10.1111/j.1440-1681.2007.04725.x17714097)
Gao Y, Zhang Y, Dong Y et al (2020) Dexmedetomidine mediates neuroglobin up-regulation and alleviates the hypoxia / reoxygenation injury by inhibiting neuronal apoptosis in developing rats. Front Pharmacol 11:1–9. https://doi.org/10.3389/fphar.2020.555532. (PMID: 10.3389/fphar.2020.555532)
Haglund U (1988) Hypoxia and reoxygenation—two mechanisms for tissue injury in ischemia and shock. Ups J Med Sci 93:127–129. https://doi.org/10.3109/03009738809178533. (PMID: 10.3109/030097388091785333061119)
Hamanaka RB, Chandel NS (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol 21:894–899. https://doi.org/10.1016/j.ceb.2009.08.005. (PMID: 10.1016/j.ceb.2009.08.005197819262787901)
Hammond RS, Bond CT, Strassmaier T et al (2006) Small-Conductance Ca2+-Activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J Neurosci 26:1844–1853. https://doi.org/10.1523/jneurosci.4106-05.2006. (PMID: 10.1523/jneurosci.4106-05.2006164675336793641)
Hooge RD, De DPP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90. (PMID: 10.1016/S0165-0173(01)00067-4)
Hota SK, Barhwal K, Singh SB, Ilavazhagan G (2007) Differential temporal response of hippocampus, cortex and cerebellum to hypobaric hypoxia: a biochemical approach. Neurochem Int 51:384–390. https://doi.org/10.1016/j.neuint.2007.04.003. (PMID: 10.1016/j.neuint.2007.04.00317531352)
Hota SK, Barhwal K, Ray K et al (2008a) Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia. Neurobiol Learn Mem 89:522–532. https://doi.org/10.1016/j.nlm.2008.01.003. (PMID: 10.1016/j.nlm.2008.01.00318304843)
Hota SK, Barhwal K, Singh SB, Sairam M (2008b) NR1 and GluR2 expression mediates excitotoxicity in chronic hypobaric hypoxia. J Neurosci Res 86:1142–1152. https://doi.org/10.1002/jnr.21554. (PMID: 10.1002/jnr.2155417969105)
Hou Y, Wang X, Chen X et al (2019) Establishment and evaluation of a simulated high-altitude hypoxic brain injury model in SD rats. Mol Med Rep 19:2758–2766. https://doi.org/10.3892/mmr.2019.9939. (PMID: 10.3892/mmr.2019.9939307201436423628)
Huppert FA (1982) Memory impairment associated with chronic hypoxia. Thorax 37:858–860. https://doi.org/10.1136/thx.37.11.858. (PMID: 10.1136/thx.37.11.8587164006459442)
Inan SY, Aksu F, Baysal F (2000) The effects of some K+ channel blockers on scopolamine- or electroconvulsive shock-induced amnesia in mice. Eur J Pharmacol 407:159–164. (PMID: 10.1016/S0014-2999(00)00736-6)
Jain V, Baitharu I, Barhwal K et al (2012) Enriched environment prevents hypobaric hypoxia induced neurodegeneration and is independent of antioxidant signaling. Cell Mol Neurobiol 32:599–611. https://doi.org/10.1007/s10571-012-9807-5. (PMID: 10.1007/s10571-012-9807-522331403)
Jain V, Baitharu I, Prasad D, Ilavazhagan G (2013) Enriched environment prevents hypobaric hypoxia induced memory impairment and neurodegeneration: role of BDNF / PI3K / GSK3 b pathway coupled with CREB activation. PLoS ONE 8:e62235. https://doi.org/10.1371/journal.pone.0062235. (PMID: 10.1371/journal.pone.0062235237048763660501)
Jensen BOS, Strøbæk D, Christophersen P et al (1998) Characterization of the cloned human intermediate-conductance Ca 2+ -activated K+ channel. Am J Physiol 275:C848–C856. https://doi.org/10.1152/ajpcell.1998.275.3.C848. (PMID: 10.1152/ajpcell.1998.275.3.C8489730970)
Jung SH, Brownlow ML, Pellegrini M, Jankord R (2017) Divergence in morris water maze-based cognitive performance under chronic stress is associated with the hippocampal whole transcriptomic modification in mice. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2017.00275. (PMID: 10.3389/fnmol.2017.00275289126815582454)
Kass IS, Liptont P (1986) Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. J Physiol 378:313–334. https://doi.org/10.1113/jphysiol.1986.sp016221. (PMID: 10.1113/jphysiol.1986.sp01622130254321182866)
Kawasaki K, Traynelis SF, Dingledine R (1990) Different responses of CA1 and CA3 regions to hypoxia in rat hippocampal slice. J Neurophysiol 63:385–394. https://doi.org/10.1152/jn.1990.63.3.385. (PMID: 10.1152/jn.1990.63.3.3852158521)
Kelly MJ, Rønnekleiv OK, Ibrahim N et al (2002) Estrogen modulation of K +channel activity in hypothalamic neurons involved in the control of the reproductive axis. Steroids 67:447–456. https://doi.org/10.1016/S0039-128X(01)00181-7. (PMID: 10.1016/S0039-128X(01)00181-711960620)
Krnjević K (1999) Early effects of hypoxia on brain cell function. Croat Med J 40:375–380. (PMID: 10411965)
Kushwah N, Jain V, Deep S et al (2016) Neuroprotective role of intermittent hypobaric hypoxia in unpredictable chronic mild stress induced depression in rats. PLoS ONE 11:1–20. https://doi.org/10.1371/journal.pone.0149309. (PMID: 10.1371/journal.pone.0149309)
Kushwah N, Jain V, Dheer A et al (2018) Hypobaric Hypoxia induced learning and memory impairment: elucidating the role of small conductance Ca 2 + activated K + channels. Neuroscience 388:418–429. https://doi.org/10.1016/j.neuroscience.2018.07.026. (PMID: 10.1016/j.neuroscience.2018.07.02630048783)
Lafuente JV, Bermudez G, Camargo- Arce L, Bulnes S (2016) Blood-brain barrier changes in high altitude. CNS Neurol Disord Drug Targets 15:1188–1197. https://doi.org/10.2174/18715273156661609201239. (PMID: 10.2174/1871527315666160920123927667557)
LaManna JC, Vendel LM, Farrell RM (1992) Brain adaptation to chronic hypobaric hypoxia in rats. J Appl Physiol 72:2238–2243. https://doi.org/10.1152/jappl.1992.72.6.2238. (PMID: 10.1152/jappl.1992.72.6.22381629078)
Lebel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2’,7’-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24. https://doi.org/10.1016/0041-008X(90)90278-3. (PMID: 10.1016/0041-008X(90)90278-32163122)
Li X, Fang P, Mai J et al (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:1–19. https://doi.org/10.1186/1756-8722-6-19. (PMID: 10.1186/1756-8722-6-19)
Litt M, Lamorticella D, Bond CT, Adelman JP (1999) Gene structure and chromosome mapping of the human small-conductance calcium- activated potassium channel SK1 gene. Cytogenet Cell Genet 86:70–73. https://doi.org/10.1159/000015415. (PMID: 10.1159/00001541510516439)
Lochhead JJ, Mccaffrey G, Quigley CE et al (2010) Oxidative stress increases blood – brain barrier permeability and induces alterations in occludin during hypoxia – reoxygenation. J Cereb Blood Flow Metab 30:1625–1636. https://doi.org/10.1038/jcbfm.2010.29. (PMID: 10.1038/jcbfm.2010.29202343822949263)
Maiti P, Singh SB, Sharma AK et al (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int 49:709–716. https://doi.org/10.1016/j.neuint.2006.06.002. (PMID: 10.1016/j.neuint.2006.06.00216911847)
Maiti P, Muthuraju S, Ilavazhagan G, Singh SB (2008a) Hypobaric hypoxia induces dendritic plasticity in cortical and hippocampal pyramidal neurons in rat brain. Behav Brain Res 189:233–243. https://doi.org/10.1016/j.bbr.2008.01.007. (PMID: 10.1016/j.bbr.2008.01.00718321600)
Maiti P, Singh SB, Mallick B et al (2008b) High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum. J Chem Neuroanat 36:227–238. https://doi.org/10.1016/j.jchemneu.2008.07.003. (PMID: 10.1016/j.jchemneu.2008.07.00318692566)
Maiti P, Singh SB, Ilavazhagan G (2010) Nitric oxide system is involved in hypobaric hypoxia-induced oxidative stress in rat brain. Acta Histochem 112:222–232. https://doi.org/10.1016/j.acthis.2008.10.005. (PMID: 10.1016/j.acthis.2008.10.00519428054)
McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163. https://doi.org/10.1056/NEJM198501173120305. (PMID: 10.1056/NEJM1985011731203052981404)
Mishra OP, Delivoria-papadopoulos M (1989) Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Dev Brain Res 45:129–135. https://doi.org/10.1016/0165-3806(89)90014-X. (PMID: 10.1016/0165-3806(89)90014-X)
Muthuraju S, Pati S (2014) Effect of hypobaric hypoxia on cognitive functions and potential therapeutic agents. Malaysian J Med Sci 21:41–45.
Muthuraju S, Maiti P, Solanki P et al (2009) Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav Brain Res 203:1–14. https://doi.org/10.1016/j.bbr.2009.03.026. (PMID: 10.1016/j.bbr.2009.03.02619446892)
Muthuraju S, Maiti P, Pati S et al (2011) Role of cholinergic markers on memory function of rats exposed to hypobaric hypoxia. Eur J Pharmacol 672:96–105. https://doi.org/10.1016/j.ejphar.2011.08.023. (PMID: 10.1016/j.ejphar.2011.08.02321924263)
Naghdi N, Majlessi N, Bozorgmehr T (2003) The effects of anisomycin (a protein synthesis inhibitor ) on spatial learning and memory in CA1 region of rats hippocampus. Behav Brain Res 139:69–73. https://doi.org/10.1016/S0166-4328(02)00060-8. (PMID: 10.1016/S0166-4328(02)00060-812642177)
Ngo-anh TJ, Bloodgood BL, Lin M et al (2005) SK channels and NMDA receptors form a Ca 2 + -mediated feedback loop in dendritic spines. Nat Neurosci 8:642–649. https://doi.org/10.1038/nn1449. (PMID: 10.1038/nn144915852011)
Pedarzani P, Stocker M (2008) Molecular and cellular basis of small- and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell Mol Life Sci 65:3196–3217. https://doi.org/10.1007/s00018-008-8216-x. (PMID: 10.1007/s00018-008-8216-x185970442798969)
Pedarzani P, Mccutcheon JE, Rogge G et al (2005) Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current I AHP and modulates the firing properties of hippocampal pyramidal neurons*. J Biol Chem 280:41404–41411. https://doi.org/10.1074/jbc.M509610200. (PMID: 10.1074/jbc.M50961020016239218)
Peng D, Pan X, Cui J et al (2013) Hyperphosphorylation of tau protein in hippocampus of central insulin- resistant rats is associated with cognitive impairment. Cell Physiol Biochem. https://doi.org/10.1159/000356579. (PMID: 10.1159/00035657924356513)
Pinson A, Tirosh R (1996) Reversible and irreversible damage in reoxygenated “ischemic” ventricular myocytes in culture. Mol Cell Biochem 160–161:137–141. https://doi.org/10.1007/BF00240043. (PMID: 10.1007/BF002400438901467)
Quaife RA, Kohmoto O, Barry WH (1991) Mechanisms of reoxygenation injury in cultured ventricular myocytes. Circulation 83:566–577. https://doi.org/10.1161/01.CIR.83.2.566. (PMID: 10.1161/01.CIR.83.2.5661991375)
Sailer CA, Hu H, Kaufmann WA et al (2002) Regional differences in distribution and functional expression of small-conductance Ca 2+ -Activated K + channels in rat brain. J Neurosci 22:9698–9707. https://doi.org/10.1523/jneurosci.22-22-09698.2002. (PMID: 10.1523/jneurosci.22-22-09698.2002124278256757844)
Schoch HJ, Fischer S, Marti HH (2002) Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125:2549–2557. https://doi.org/10.1093/brain/awf257. (PMID: 10.1093/brain/awf25712390979)
Schurr A, West CA, Rigor BM (1989) Electrophysiology of energy metabolism and neuronal function in the hippocampal slice preparation. J Neurosci Methods 28:7–13. https://doi.org/10.1016/0165-0270(89)90004-6. (PMID: 10.1016/0165-0270(89)90004-62725015)
Shi X, Liu Z, Li J (2020) Protective effects of dexmedetomidine on hypoxia/reoxygenation injury in cardiomyocytes by regulating the CHOP signaling pathway. Mol Med Rep 22:3307–3315. https://doi.org/10.3892/mmr.2020.11442. (PMID: 10.3892/mmr.2020.11442329454827453597)
Shukitt-hale B, Banderet LE, Lieberman HR (1998) Elevation-dependent symptom, mood, and performance changes produced by exposure to hypobaric hypoxia. Int J Aviat Psychol 8:319–334. https://doi.org/10.1207/s15327108ijap0804&#95;1. (PMID: 10.1207/s15327108ijap0804_111542275)
Šimonová Z, Štˇ K, Brožek G, Syková E (2003) Postnatal hypobaric hypoxia in rats impairs water maze learning and the morphology of neurones and macroglia in cortex and hippocampus. Behav Brain Res 141:195–205. (PMID: 10.1016/S0166-4328(02)00366-2)
Souza A, Dussan-Sarria JA, Medeiros LF et al (2014) Neonatal hypoxic-ischemic encephalopathy reduces c-Fos activation in the rat hippocampus: evidence of a long-lasting effect. Int J Dev Neurosci 38:213–222. https://doi.org/10.1016/j.ijdevneu.2014.09.003. (PMID: 10.1016/j.ijdevneu.2014.09.00325262910)
Stackman RW, Hammond RS, Linardatos E et al (2002) Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 22:10163–10171. https://doi.org/10.1523/jneurosci.22-23-10163.2002. (PMID: 10.1523/jneurosci.22-23-10163.2002124511176758766)
Stackman RW Jr, Bond CT, Adelman JP (2008) Contextual memory deficits observed in mice overexpressing small conductance Ca 2 + -activated K + type 2 (K Ca 2. 2, SK2) channels are caused by an encoding deficit. Learn Mem 4:208–213. https://doi.org/10.1101/lm.906808.These. (PMID: 10.1101/lm.906808.These)
Vannucci RC, Brucklacher RM, Vannucci SJ (2001) Intracellular calcium accumulation during the evolution of hypoxic – ischemic brain damage in the immature rat. Dev Brain Res 126:117–120. https://doi.org/10.1016/S0165-3806(00)00135-8. (PMID: 10.1016/S0165-3806(00)00135-8)
Villalobos C, Shakkottai VG, Chandy KG et al (2004) SK Ca Channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J Neurosci 24:3537–3542. https://doi.org/10.1523/JNEUROSCI.0380-04.2004. (PMID: 10.1523/JNEUROSCI.0380-04.2004150711016729743)
Vorhees CV, Williams MT (2006) Forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116. (PMID: 10.1038/nprot.2006.116174063172895266)
Wagner EJ, Rønnekleiv OK, Kelly MJ (2001) The noradrenergic inhibition of an apamin-sensitive, small-conductance Ca2+-activated K+ channel in hypothalamic y-aminobutyric acid neurons : pharmacology, estrogen sensitivity, and relevance to the control of the reproductive axis. J Pharmacol Exp Ther 299:21–30. (PMID: 11561059)
Wang L, Zhu Q, Wang G et al (2011) The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia – ischemia – reperfusion in brain. Neurosci Lett 491:63–67. https://doi.org/10.1016/j.neulet.2010.12.065. (PMID: 10.1016/j.neulet.2010.12.06521215294)
Watson BD (1993) Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke. In: Kogure K, Hossmann K-A, Siesjö BK (eds) Progress in Brain Research, 1st edn. Elsevier, Amsterdam, pp 69–95.
Wei W, Peng J, Li J (2019) Curcumin attenuates hypoxia/reoxygenation-induced myocardial injury. Mol Med Rep 20:4821–4830. https://doi.org/10.3892/mmr.2019.10742. (PMID: 10.3892/mmr.2019.10742316382196854596)
Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413. https://doi.org/10.1523/JNEUROSCI.22-09-03404.2002. (PMID: 10.1523/JNEUROSCI.22-09-03404.2002119788176758365)
Womack MD, Khodakhah K (2003) Cerebellar Purkinje neurons. J Neurosci 23:2600–2607. https://doi.org/10.1523/JNEUROSCI.23-07-02600.2003. (PMID: 10.1523/JNEUROSCI.23-07-02600.2003126844456742089)
Wong CHY, Crack PJ (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr Med Chem 15:1–14. https://doi.org/10.2174/092986708783330665. (PMID: 10.2174/09298670878333066518220759)
Wu S, Tamaki N, Nagashima T, Yamaguchi M (1998) Reactive oxygen species in reoxygenation injury of rat brain capillary endothelial cells: commentaries. Neurosurgery 43:584. https://doi.org/10.1097/00006123-199809000-00102. (PMID: 10.1097/00006123-199809000-00102)
Xie J, Cheng C, Jie Y et al (2019) Expression of lactate dehydrogenase is induced during hypoxia via HIF-1 in the mud crab Scylla paramamosain. Comp Biochem Physiol Part C 225:108563. https://doi.org/10.1016/j.cbpc.2019.108563. (PMID: 10.1016/j.cbpc.2019.108563)
Ying S, Goldstein PA (2005) Propofol-block of SK channels in reticular thalamic neurons enhances GABaergic inhibition in relay neurons. J Neurophysiol 93:1935–1948. https://doi.org/10.1152/jn.01058.2004. (PMID: 10.1152/jn.01058.200415563549)
Zhao RZ, Jiang S, Zhang L, Bin YuZ (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44:3–15. https://doi.org/10.3892/ijmm.2019.4188. (PMID: 10.3892/ijmm.2019.4188311154936559295)
Zhu P, Yang M, He H et al (2019) Curcumin attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by downregulating Notch signaling. Mol Med Rep 20:1541–1550. https://doi.org/10.3892/mmr.2019.10371. (PMID: 10.3892/mmr.2019.10371312574666625400)
معلومات مُعتمدة: DIP-263 Defence Research and Development Organisation
فهرسة مساهمة: Keywords: Cognition; Morris water maze; Neurodegeneration; SK channels; Sprague–Dawley rats
تواريخ الأحداث: Date Created: 20210329 Date Completed: 20210728 Latest Revision: 20210728
رمز التحديث: 20240628
DOI: 10.1007/s00221-021-06095-8
PMID: 33779792
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1106
DOI:10.1007/s00221-021-06095-8