دورية أكاديمية

HDAC inhibition prevents hypobaric hypoxia-induced spatial memory impairment through PΙ3K/GSK3β/CREB pathway.

التفاصيل البيبلوغرافية
العنوان: HDAC inhibition prevents hypobaric hypoxia-induced spatial memory impairment through PΙ3K/GSK3β/CREB pathway.
المؤلفون: Kumar R; Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India., Jain V; Neurophysiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India., Kushwah N; Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India., Dheer A; Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India., Mishra KP; Defence Research and Development Organisation (DRDO)-HQ, New Delhi, India., Prasad D; Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India., Singh SB; National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
المصدر: Journal of cellular physiology [J Cell Physiol] 2021 Sep; Vol. 236 (9), pp. 6754-6771. Date of Electronic Publication: 2021 Mar 31.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Signal Transduction*/drug effects , Spatial Memory*/drug effects, Cyclic AMP Response Element-Binding Protein/*metabolism , Glycogen Synthase Kinase 3 beta/*metabolism , Histone Deacetylase Inhibitors/*pharmacology , Hypoxia/*complications , Memory Disorders/*etiology , Phosphatidylinositol 3-Kinases/*metabolism, Acetylation/drug effects ; Animals ; Brain-Derived Neurotrophic Factor/genetics ; Hippocampus/metabolism ; Histone Acetyltransferases/genetics ; Histone Acetyltransferases/metabolism ; Histone Deacetylases/genetics ; Histone Deacetylases/metabolism ; Histones/metabolism ; Male ; Memory Disorders/metabolism ; Models, Biological ; Nerve Degeneration/complications ; Neurons/drug effects ; Neurons/metabolism ; Neuroprotection/drug effects ; Promoter Regions, Genetic/genetics ; RNA, Messenger/genetics ; RNA, Messenger/metabolism ; Rats, Sprague-Dawley ; Rats
مستخلص: Hypobaric hypoxia at higher altitudes usually impairs cognitive function. Previous studies suggested that epigenetic modifications are the culprits for this condition. Here, we set out to determine how hypobaric hypoxia mediates epigenetic modifications and how this condition worsens neurodegeneration and memory loss in rats. In the current study, different duration of hypobaric hypoxia exposure showed a discrete pattern of histone acetyltransferases and histone deacetylases (HDACs) gene expression in the hippocampus when compared with control rat brains. The level of acetylation sites in histone H2A, H3 and H4 was significantly decreased under hypobaric hypoxia exposure compared to the control rat's hippocampus. Additionally, inhibiting the HDAC family with sodium butyrate administration (1.2 g/kg body weight) attenuated neurodegeneration and memory loss in hypobaric hypoxia-exposed rats. Moreover, histone acetylation increased at the promoter regions of brain-derived neurotrophic factor (BDNF); thereby its protein expression was enhanced significantly in hypobaric hypoxia exposed rats treated with HDAC inhibitor compared with hypoxic rats. Thus, BDNF expression upregulated cAMP-response element binding protein (CREB) phosphorylation by stimulation of PI3K/GSK3β/CREB axis, which counteracts hypobaric hypoxia-induced spatial memory impairment. In conclusion, these results suggested that sodium butyrate is a novel therapeutic agent for the treatment of spatial memory loss associated with hypobaric hypoxia, and also further studies are warranted to explore specific HDAC inhibitors in this condition.
(© 2021 Wiley Periodicals LLC.)
References: Ahn, M. , Kim, J. , Park, C. , Cho, J. , Jee, Y. , Jung, K. , Moon, C. , & Shin, T. (2017). Potential involvement of glycogen synthase kinase (GSK)-3β in a rat model of multiple sclerosis: Evidenced by lithium treatment. Anatomy & Cell Biology, 50(1), 48-59.
Alao, J. P. , Stavropoulou, A. V. , Lam, E. W. , & Coombes, R. C. (2006). Role of glycogen synthase kinase 3 beta (GSK3beta) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells. Molecular Cancer, 3(5), 40.
Barrett, R. M. , Malvaez, M. , Kramar, E. , Matheos, D. P. , Arizona, A. , Cabrera, S. M. , Lynch, G. , Greene, R. W. , & Wood, M. A. (2011). Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology, 36(8), 1545-1556.
Beer, J. M. A. , Shender, B. S. , Chauvin, D. , Dart, T. S. , & Fischer, J. (2017). Cognitive deterioration in moderate and severe hypobaric hypoxia conditions. Aerospace Medicine and Human Performance, 88(7), 617-626.
Chen, R. , Xu, M. , Hogg, R. T. , Li, J. , Little, B. , Gerard, R. D. , & Garcia, J. A. (2012). The acetylase/deacetylase couple CREB-binding protein/sirtuin 1 controls hypoxia-inducible factor 2 signaling. Journal of Biological Chemistry, 287(36), 30800-30811.
Choi, H. , Kim, H. J. , Kim, J. , Kim, S. , Yang, J. , Lee, W. , Park, Y. , Hyeon, S. J. , Lee, D. S. , Ryu, H. , Chung, J. , & Mook-Jung, I. (2017). Increased acetylation of peroxiredoxin1 by HDAC6 inhibition leads to recovery of Aβ-induced impaired axonal transport. Molecular Neurodegeneration, 12(1), 23.
Demyanenko, S. , & Uzdensky, A. (2019). Epigenetic alterations induced by photothrombotic stroke in the rat cerebral cortex: Deacetylation of histone h3, upregulation of histone deacetylases and histone acetyltransferases. International Journal of Molecular Sciences, 20(12), 2882.
Dengler, V. L. , Galbraith, M. , & Espinosa, J. M. (2014). Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology, 49(1), 1-15.
Deussing, J. M. , & Jakovcevski, M. (2017). Histone modifications in major depressive disorder and related rodent models. Advances in Experimental Medicine and Biology, 978, 169-183.
Dheer, A. , Jain, V. , Kushwah, N. , Kumar, R. , Prasad, D. , & Singh, S. B. (2018). Temporal and spatial changes in glial cells during chronic hypobaric hypoxia: Role in neurodegeneration. Neuroscience, 383, 235-246.
Dovey, O. M. , Foster, C. T. , & Cowley, S. M. (2010). Emphasizing the positive: A role for histone deacetylases in transcriptional activation. Cell Cycle, 9(14), 2700-2701.
Drissi, I. , Deschamps, C. , Fouquet, G. , Alary, R. , Peineau, S. , Gosset, P. , Sueur, H. , Marcq, I. , Debuysscher, V. , Naassila, M. , Vilpoux, C. , & Pierrefiche, O. (2019). Memory and plasticity impairment after binge drinking in adolescent rat hippocampus: GluN2A/GluN2B NMDA receptor subunits imbalance through HDAC2. Addiction Biology, e12760.
Farrelly-Rosch, A. , Lau, C. L. , Patil, N. , Turner, B. J. , & Shabanpoor, F. (2017). Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochemistry International, 108, 213-221.
Fischer, A. , Sananbenesi, F. , Wang, X. , Dobbin, M. , & Tsai, L. H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447(7141), 178-182.
Funato, H. , Oda, S. , Yokofujita, J. , Igarashi, H. , & Kuroda, M. (2011). Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLOS One, 6(4), e18950.
Gouveia, A. , Hsu, K. , Niibori, Y. , Seegobin, M. , Cancino, G. I. , He, L. , Wondisford, F. E. , Bennett, S. , Lagace, D. , Frankland, P. W. , & Wang, J. (2016). The aPKC-CBP pathway regulates adult hippocampal neurogenesis in an age-dependent manner. Stem Cell Reports, 7(4), 719-734.
Jain, V. , Baitharu, I. , Prasad, D. , & Ilavazhagan, G. (2013). Enriched environment prevents hypobaric hypoxia induced memory impairment and neurodegeneration: Role of BDNF/PI3K/GSK3β pathway coupled with CREB activation. PLOS One, 8(5), e62235.
Kalkhoven, E. (2004). CBP and p300: HATs for different occasions. BiochemPharmacol, 68(6), 1145-1155.
Karmodiya, K. , Krebs, A. R. , Oulad-Abdelghani, M. , Kimura, H. , & Tora, L. (2012). H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics, 13, 424.
Kidambi, S. , Yarmush, J. , Berdichevsky, Y. , Kamath, S. , Fong, W. , & Schianodicola, J. (2010). Propofol induces MAPK/ERK cascade dependent expression of cFos and Egr-1 in rat hippocampal slices. BMC Research Notes, 3, 201.
Kim, A. H. , Khursigara, G. , Sun, X. , Franke, T. F. , & Chao, M. V. (2001). Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Molecular and Cellular Biology, 21(3), 893-901.
Kong, Q. , Hao, Y. , Li, X. , Wang, X. , Ji, B. , & Wu, Y. (2018). HDAC4 in ischemic stroke: Mechanisms and therapeutic potential. Clinical Epigenetics, 10(1), 117.
Koyuncuoglu, T. , Turkyilmaz, M. , Goren, B. , Cetinkaya, M. , Cansev, M. , & Alkan, T. (2015). Uridine protects against hypoxic-ischemic brain injury by reducing histone deacetylase activity in neonatal rats. Restorative Neurology and Neurosciences, 33(5), 777-784.
Kumar, A. , & Thakur, M. K. (2015). Epigenetic regulation of Presenilin 1 and 2 in the cerebral cortex of mice during development. Developmental Neurobiology, 75, 1165-1173.
Kumar, R. , Jain, V. , Kushwah, N. , Dheer, A. , Mishra, K. P. , Prasad, D. , & Singh, S. B. (2018). Role of DNA methylation in hypobaric hypoxia-induced neurodegeneration and spatial memory impairment. Annals of Neurosciences, 25(4), 191-200.
Kushwah, N. , Jain, V. , Dheer, A. , Kumar, R. , Prasad, D. , & Khan, N. (2018). Hypobaric Hypoxia-Induced Learning and Memory Impairment: Elucidating the Role of Small Conductance Ca (2+)-Activated K (+) Channels. Neuroscience, 388, 418-429.
Lee, J. , Hwang, Y. J. , Kim, K. Y. , Kowall, N. W. , & Ryu, H. (2013). Epigenetic mechanisms of neurodegeneration in Huntington's disease. Neurotherapeutics, 10(4), 664-676.
Li, X. , Bao, X. , & Wang, R. (2016). Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (review). Molecular Medicine Reports, 14(2), 1043-1053.
Lima Giacobbo, B. , Doorduin, J. , Klein, H. C. , Dierckx, R. A. J. O. , Bromberg, E. , & de Vries, E. F. J. (2019). Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on neuroinflammation. Mol Neurobiol, 56(5), 3295-3312.
Livak, K. J. , & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2^-ΔΔCT Method. Methods, 25, 402-408.
Maiti, P. , Muthuraju, S. , Ilavazhagan, G. , & Singh, S. B. (2008). Hypobaric hypoxia induces dendritic plasticity in cortical and hippocampal pyramidal neurons in the rat brain. Behavioural Brain Research, 189(2), 233-243.
Morris, E. K. , Hursh, D. E. , Winston, A. S. , Gelfand, D. M. , Hartmann, D. P. , Reese, H. W. , & Baer, D. M. (1982). Behaviour analysis and developmental psychology. Human Development, 25(5), 340-364.
Murray, D. R. , Mummidi, S. , Valente, A. J. , Yoshida, T. , Somanna, N. K. , Delafontaine, P. , Dinarello, C. A. , & Chandrasekar, B. (2012). β2 adrenergic activation induces the expression of IL-18 binding protein, a potent inhibitor of isoproterenol-induced cardiomyocyte hypertrophy in vitro and myocardial hypertrophy in vivo. Journal of Molecular and Cellular Cardiology, 52(1), 206-218.
Naia, L. , Cunha-Oliveira, T. , Rodrigues, J. , Rosenstock, T. R. , Oliveira, A. , Ribeiro, M. , Carmo, C. , Oliveira-Sousa, S. I. , Duarte, A. I. , Hayden, M. R. , & Rego, A. C. (2013). Histone deacetylaseinhibitors protect against pyruvate dehydrogenase dysfunction in Huntington's disease. Journal of Neuroscience, 37(10), 2776-2794.
Panikker, P. , Xu, S. J. , Zhang, H. , Sarthi, J. , Beaver, M. , Sheth, A. , Akhter, S. , & Elefant, F. (2018). Restoring Tip60 HAT/HDAC2 balance in the neurodegenerative brain relieves epigenetic transcriptional repression and reinstates cognition. Journal of Neuroscience, 38(19), 4569-4583.
Park, D. H. , Hong, S. J. , Salinas, R. D. , Liu, S. J. , Sun, S. W. , Sgualdino, J. , Testa, G. , Matzuk, M. M. , Iwamori, N. , & Lim, D. A. (2014). Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Reports, 8(5), 1290-1299.
Peleg, S. , Sananbenesi, F. , Zovoilis, A. , Burkhardt, S. , Bahari-Javan, S. , Agis-Balboa, R. C. , Cota, P. , Wittnam, J. L. , Gogol-Doering, A. , Opitz, L. , Salinas-Riester, G. , Dettenhofer, M. , Kang, H. , Farinelli, L. , Chen, W. , & Fischer, A. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 328(5979), 753-756.
Perez-Perri, J. I. , Acevedo, J. M. , & Wappner, P. (2011). Epigenetics: New questions on the response to hypoxia. Int J Mol Sci, 12(7), 4705-4721.
Qiu, X. , Xiao, X. , Li, N. , & Li, Y. (2017). Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 72, 60-72.
Rumbaugh, G. , & Miller, C. A. (2011). Epigenetic changes in the brain: Measuring global histone modifications. Methods in Molecular Biology, 670, 263-274.
Saha, R. N. , & Pahan, K. (2006). HATs and HDACs in neurodegeneration: A tale of disconcerted acetylation homeostasis. Cell Death and Differentiation, 13(4), 539-550.
Sanchez-Mut, J. V. , & Gräff, J. (2015). Epigenetic alterations in Alzheimer's disease. Frontiers in Behavioral Neuroscience, 17(9), 347.
Sartor, G. C. , Malvezzi, A. M. , Kumar, A. , Andrade, N. S. , Wiedner, H. J. , Vilca, S. J. , Janczura, K. J. , Bagheri, A. , Al-Ali, H. , Powell, S. K. , Brown, P. T. , Volmar, C. H. , Foster, T. C. , Zeier, Z. , & Wahlestedt, C. (2019). Enhancement of BDNF expression and memory by HDAC inhibition requires BET bromodomain reader proteins. Journal of Neuroscience, 39(4), 612-626.
Schmid, C. , Albertson, C. , & Slikker, W., Jr. (1997). Fluoro-Jade: A novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Research, 751(1), 37-46.
Schweizer, S. , Meisel, A. , & Marschenz, S. (2013). Epigenetic mechanisms in cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 33(9), 1335-1346.
Sheikh, B. N. (2014). Crafting the brain-Role of histone acetyltransferases in neurodevelopment and disease. Cell Tissue, 356(3), 553-573.
Stanzione, R. , Cotugno, M. , Bianchi, F. , Marchitti, S. , Forte, M. , Volpe, M. , & Rubattu, S. (2020). Pathogenesis of ischemic stroke: Role of epigenetic mechanisms. Genes, 11(1), 89.
Stephanou, A. , & Latchman, D. S. (2011). Transcriptional modulation of heat-shock protein gene expression. Biochemistry Research International, 2011, 238601-238608.
Sun, J. , Ming, G. L. , & Song, H. (2011). Epigenetic regulation of neurogenesis in the adult mammalian brain. European Journal of Neuroscience, 33(6), 1087-1093.
Suo, H. , Wang, P. , Tong, J. , Cai, L. , Liu, J. , Huang, D. , Huang, L. , Wang, Z. , Huang, Y. , Xu, J. , Ma, Y. , Yu, M. , Fei, J. , & Huang, F. (2015). NRSF is an essential mediator for the neuroprotection of trichostatin A in the MPTP mouse model of Parkinson's disease. Neuropharmacology, 99, 67-78.
Tapias, A. , & Wang, Z. Q. (2017). Lysine acetylation and deacetylation in brain development and neuropathies. Genomics, Proteomics & Bioinformatics/Beijing Genomics Institute, 15(1), 19-36.
Tian, F. , Marini, A. M. , & Lipsky, R. H. (2010). Effects of histone deacetylase inhibitor trichostatin A on epigenetic changes and transcriptional activation of Bdnfpromoter 1 by rat hippocampal neurons. Annals of the New York Academy of Sciences, 99, 186-193.
Tsankova, N. M. , Kumar, A. , & Nestler, E. J. (2004). Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. Journal of Neuroscience, 24(24), 5603-5610.
Wang, Z. , Havasi, A. , Gall, J. , Bonegio, R. , Li, Z. , Mao, H. , Schwartz, J. H. , & Borkan, S. C. (2010). GSK3beta promotes apoptosis after renal ischemic injury. Journal of the American Society of Nephrology, 21(2), 284-294.
Yamawaki, Y. , Fuchikami, M. , Morinobu, S. , Segawa, M. , Matsumoto, T. , & Yamawaki, S. (2012). Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World Journal of Biological Psychiatry, 6, 458-467.
Yang, X. J. , & Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nature Reviews Molecular Cell Biology, 3, 206-218.
Yildirim, F. , Ji, S. , Kronenberg, G. , Barco, A. , Olivares, R. , Benito, E. , Dirnagl, U. , Gertz, K. , Endres, M. , Harms, C. , & Meisel, A. (2014). Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury. PLOS One, 9(4), e95465.
Zhu, X. , Li, Q. , Chang, R. , Yang, D. , Song, Z. , Guo, Q. , & Huang, C. (2014). Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLOS One, 9(3), e91303.
Ziemke-Nalecz, M. , Jaworska, J. , Sypecka, J. , & Zalewska, T. (2018). Histone deacetylase inhibitors: A therapeutic key in neurological disorders? Journal of Neuropathology and Experimental Neurology, 77(10), 855-870.
فهرسة مساهمة: Keywords: brain-derived neurotrophic factor; histone acetyl transferases; histone deacetylase; hypobaric hypoxia
المشرفين على المادة: 0 (Brain-Derived Neurotrophic Factor)
0 (Cyclic AMP Response Element-Binding Protein)
0 (Histone Deacetylase Inhibitors)
0 (Histones)
0 (RNA, Messenger)
EC 2.3.1.48 (Histone Acetyltransferases)
EC 2.7.11.1 (Glycogen Synthase Kinase 3 beta)
EC 3.5.1.98 (Histone Deacetylases)
تواريخ الأحداث: Date Created: 20210331 Date Completed: 20211110 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1002/jcp.30337
PMID: 33788269
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.30337