دورية أكاديمية

Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes.

التفاصيل البيبلوغرافية
العنوان: Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes.
المؤلفون: Bebber CM; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.; Clinic I for Internal Medicine, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Thomas ES; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.; Imperial College London, London, UK., Stroh J; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany., Chen Z; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany., Androulidaki A; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany., Schmitt A; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.; Clinic I for Internal Medicine, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Höhne MN; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.; Department for Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany., Stüker L; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany., de Pádua Alves C; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany., Khonsari A; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany.; Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Dammert MA; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany.; Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Parmaksiz F; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany.; Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Tumbrink HL; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany.; Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Beleggia F; Clinic I for Internal Medicine, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Sos ML; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany.; Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany., Riemer J; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.; Department for Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany., George J; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany., Brodesser S; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany., Thomas RK; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.; Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany.; DKFZ, German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany., Reinhardt HC; Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany., von Karstedt S; Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany. s.vonkarstedt@uni-koeln.de.; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany. s.vonkarstedt@uni-koeln.de.; Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany. s.vonkarstedt@uni-koeln.de.
المصدر: Nature communications [Nat Commun] 2021 Apr 06; Vol. 12 (1), pp. 2048. Date of Electronic Publication: 2021 Apr 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Ferroptosis*, Neuroendocrine Tumors/*pathology , Small Cell Lung Carcinoma/*pathology, Animals ; Antioxidants/metabolism ; Apoptosis ; Biomarkers, Tumor/metabolism ; Cell Line, Tumor ; Cell Survival ; Humans ; Lipid Metabolism ; Male ; Mice, Nude ; Models, Biological ; Necroptosis ; Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism ; Phospholipids/metabolism ; Prognosis ; Thioredoxins/metabolism ; Mice
مستخلص: Loss of TP53 and RB1 in treatment-naïve small cell lung cancer (SCLC) suggests selective pressure to inactivate cell death pathways prior to therapy. Yet, which of these pathways remain available in treatment-naïve SCLC is unknown. Here, through systemic analysis of cell death pathway availability in treatment-naïve SCLC, we identify non-neuroendocrine (NE) SCLC to be vulnerable to ferroptosis through subtype-specific lipidome remodeling. While NE SCLC is ferroptosis resistant, it acquires selective addiction to the TRX anti-oxidant pathway. In experimental settings of non-NE/NE intratumoral heterogeneity, non-NE or NE populations are selectively depleted by ferroptosis or TRX pathway inhibition, respectively. Preventing subtype plasticity observed under single pathway targeting, combined treatment kills established non-NE and NE tumors in xenografts, genetically engineered mouse models of SCLC and patient-derived cells, and identifies a patient subset with drastically improved overall survival. These findings reveal cell death pathway mining as a means to identify rational combination therapies for SCLC.
References: Cell Metab. 2018 Sep 4;28(3):369-382.e5. (PMID: 30043754)
Cell Rep. 2019 Aug 27;28(9):2275-2287.e5. (PMID: 31461645)
Biochemistry. 2018 Apr 10;57(14):2059-2060. (PMID: 29584411)
Cell Death Differ. 2003 Mar;10(3):356-64. (PMID: 12700635)
Cancer Discov. 2019 Dec;9(12):1673-1685. (PMID: 31554642)
Nat Rev Cancer. 2017 Nov 10;17(12):765. (PMID: 29123245)
Oncotarget. 2017 Sep 1;8(43):73419-73432. (PMID: 29088717)
Oncogene. 2002 Dec 5;21(55):8510-4. (PMID: 12466971)
Lancet Oncol. 2016 Jul;17(7):883-895. (PMID: 27269741)
N Engl J Med. 2014 Dec 4;371(23):2189-2199. (PMID: 25409260)
Nat Commun. 2019 Aug 2;10(1):3485. (PMID: 31375684)
Cancers (Basel). 2020 Jan 09;12(1):. (PMID: 31936571)
Clin Cancer Res. 2011 Oct 1;17(19):6206-17. (PMID: 21844013)
Cancer Discov. 2018 Oct;8(10):1316-1331. (PMID: 30228179)
Nat Chem Biol. 2019 Dec;15(12):1137-1147. (PMID: 31740834)
Nat Chem Biol. 2017 Jan;13(1):91-98. (PMID: 27842070)
Cancer Cell. 2014 Dec 8;26(6):909-922. (PMID: 25490451)
Cancer Cell. 2017 Feb 13;31(2):270-285. (PMID: 28089889)
Nature. 2019 Nov;575(7784):693-698. (PMID: 31634899)
Nat Genet. 2012 Oct;44(10):1111-6. (PMID: 22941189)
Mol Cell. 2017 Feb 16;65(4):730-742.e5. (PMID: 28212753)
Sci Immunol. 2019 Jun 21;4(36):. (PMID: 31227597)
Cell Death Differ. 2019 Jan;26(1):14-24. (PMID: 30082768)
J Clin Invest. 2020 Apr 1;130(4):1752-1766. (PMID: 31874110)
Cells. 2020 Oct 09;9(10):. (PMID: 33050207)
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17034-9. (PMID: 23035247)
Nat Commun. 2018 Sep 17;9(1):3787. (PMID: 30224629)
Nat Cancer. 2020 Apr;1:423-436. (PMID: 33521652)
Cell. 2014 Jan 16;156(1-2):317-331. (PMID: 24439385)
Biochem Biophys Res Commun. 2016 Sep 23;478(3):1338-43. (PMID: 27565726)
Bioorg Med Chem Lett. 2012 Feb 15;22(4):1822-6. (PMID: 22297109)
Mol Cell. 2017 Feb 16;65(4):715-729.e5. (PMID: 28212752)
Cancer Res. 2010 Nov 15;70(22):9505-14. (PMID: 21045148)
Cancer Cell. 2015 Feb 9;27(2):211-22. (PMID: 25620030)
Cancer Res. 2020 Mar 15;80(6):1293-1303. (PMID: 31969375)
Nat Protoc. 2009;4(7):1064-72. (PMID: 19561589)
Chem Biol. 2008 Mar;15(3):234-45. (PMID: 18355723)
Cancer Res. 2008 Mar 15;68(6):1647-55. (PMID: 18339843)
ACS Chem Biol. 2015 Jul 17;10(7):1604-9. (PMID: 25965523)
Nat Rev Cancer. 2019 May;19(5):289-297. (PMID: 30926931)
Nature. 2011 Mar 17;471(7338):368-72. (PMID: 21368762)
Genes Dev. 2018 Jul 1;32(13-14):915-928. (PMID: 29945888)
Nat Cell Biol. 2014 Dec;16(12):1180-91. (PMID: 25402683)
Nat Med. 2014 Aug;20(8):897-903. (PMID: 24880617)
Nat Genet. 2012 Oct;44(10):1104-10. (PMID: 22941188)
Cell Rep. 2014 May 22;7(4):971-81. (PMID: 24813885)
Nature. 2019 May;569(7755):270-274. (PMID: 31043744)
Science. 2016 Mar 25;351(6280):1463-9. (PMID: 26940869)
Cancer Cell. 2003 Sep;4(3):181-9. (PMID: 14522252)
Nature. 2017 May 18;545(7654):360-364. (PMID: 28489825)
Cancer Cell. 2011 Feb 15;19(2):244-56. (PMID: 21316603)
Cancer Biol Ther. 2002 Jan-Feb;1(1):65-9. (PMID: 12170765)
Nat Rev Cancer. 2019 Jul;19(7):405-414. (PMID: 31101865)
Nature. 2011 Mar 17;471(7338):363-7. (PMID: 21368763)
Nature. 2020 Sep;585(7826):603-608. (PMID: 32939090)
Ann Surg. 1986 Mar;203(3):250-4. (PMID: 3954477)
Cell Stem Cell. 2016 Mar 3;18(3):396-409. (PMID: 26748418)
Nature. 2015 Aug 6;524(7563):47-53. (PMID: 26168399)
Cancer Discov. 2018 May;8(5):600-615. (PMID: 29483136)
Cell. 2012 Jan 20;148(1-2):213-27. (PMID: 22265413)
Nat Chem Biol. 2017 Jan;13(1):81-90. (PMID: 27842066)
Cancer Cell. 2020 Jul 13;38(1):60-78.e12. (PMID: 32473656)
Cancer Cell. 2019 Jun 10;35(6):830-849. (PMID: 31105042)
Cytometry A. 2008 Jan;73(1):22-7. (PMID: 18044720)
J Cell Biol. 2015 Dec 7;211(5):1057-75. (PMID: 26644517)
Clin Cancer Res. 2019 Aug 15;25(16):5107-5121. (PMID: 31164374)
Nature. 2017 Jul 27;547(7664):453-457. (PMID: 28678785)
Nature. 2019 Nov;575(7784):688-692. (PMID: 31634900)
Nature. 2013 Aug 22;500(7463):415-21. (PMID: 23945592)
Genome Biol. 2015 Jan 05;16:7. (PMID: 25650807)
Nature. 2019 Aug;572(7769):402-406. (PMID: 31341276)
N Engl J Med. 2018 Dec 6;379(23):2220-2229. (PMID: 30280641)
Science. 2020 Apr 3;368(6486):85-89. (PMID: 32241947)
Mol Cell. 2019 Jan 17;73(2):354-363.e3. (PMID: 30581146)
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5322-7. (PMID: 22421439)
Lung Cancer. 2008 Jun;60(3):355-65. (PMID: 18093694)
Nat Rev Cancer. 2017 May 24;17(6):352-366. (PMID: 28536452)
Elife. 2016 Jun 10;5:. (PMID: 27282387)
Curr Drug Targets. 2010 Jun;11(6):745-51. (PMID: 20041844)
Nature. 2007 Jun 14;447(7146):864-8. (PMID: 17568748)
Lipids. 2008 Oct;43(10):895-902. (PMID: 18781350)
J Biol Chem. 1958 Apr;231(2):883-8. (PMID: 13539023)
Stem Cell Reports. 2018 Dec 11;11(6):1479-1492. (PMID: 30472011)
Cell Metab. 2008 Sep;8(3):237-48. (PMID: 18762024)
Nat Chem Biol. 2008 May;4(5):313-21. (PMID: 18408713)
Cell. 2012 May 25;149(5):1060-72. (PMID: 22632970)
المشرفين على المادة: 0 (Antioxidants)
0 (Biomarkers, Tumor)
0 (Phospholipids)
52500-60-4 (Thioredoxins)
EC 1.11.1.12 (Phospholipid Hydroperoxide Glutathione Peroxidase)
تواريخ الأحداث: Date Created: 20210407 Date Completed: 20210414 Latest Revision: 20240226
رمز التحديث: 20240226
مُعرف محوري في PubMed: PMC8024350
DOI: 10.1038/s41467-021-22336-4
PMID: 33824345
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-021-22336-4