دورية أكاديمية

The circulating soluble form of the CD40 costimulatory immune checkpoint receptor and liver metastasis risk in rectal cancer.

التفاصيل البيبلوغرافية
العنوان: The circulating soluble form of the CD40 costimulatory immune checkpoint receptor and liver metastasis risk in rectal cancer.
المؤلفون: Meltzer S; Department of Oncology, Akershus University Hospital, Lørenskog, Norway. sebastian.meltzer@medisin.uio.no.; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway. sebastian.meltzer@medisin.uio.no., Torgunrud A; Department of Tumour Biology, Oslo University Hospital, Oslo, Norway., Abrahamsson H; Department of Oncology, Akershus University Hospital, Lørenskog, Norway.; Institute of Clinical Medicine, University of Oslo, Oslo, Norway., Solbakken AM; Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway., Flatmark K; Department of Tumour Biology, Oslo University Hospital, Oslo, Norway.; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.; Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway., Dueland S; Department of Oncology, Oslo University Hospital, Oslo, Norway., Bakke KM; Department of Oncology, Akershus University Hospital, Lørenskog, Norway.; Institute of Clinical Medicine, University of Oslo, Oslo, Norway., Bousquet PA; Department of Oncology, Akershus University Hospital, Lørenskog, Norway., Negård A; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.; Department of Radiology, Akershus University Hospital, Lørenskog, Norway., Johansen C; Department of Oncology, Akershus University Hospital, Lørenskog, Norway., Lyckander LG; Department of Pathology, Akershus University Hospital, Lørenskog, Norway., Larsen FO; Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark., Schou JV; Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark., Redalen KR; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway., Ree AH; Department of Oncology, Akershus University Hospital, Lørenskog, Norway.; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
المصدر: British journal of cancer [Br J Cancer] 2021 Jul; Vol. 125 (2), pp. 240-246. Date of Electronic Publication: 2021 Apr 09.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group on behalf of Cancer Research UK Country of Publication: England NLM ID: 0370635 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1532-1827 (Electronic) Linking ISSN: 00070920 NLM ISO Abbreviation: Br J Cancer Subsets: MEDLINE
أسماء مطبوعة: Publication: 2002- : London : Nature Publishing Group on behalf of Cancer Research UK
Original Publication: London, Lewis.
مواضيع طبية MeSH: Biomarkers, Tumor/*blood , CD40 Antigens/*blood , Liver Neoplasms/*pathology , Liver Neoplasms/*secondary , Rectal Neoplasms/*immunology, Adult ; Aged ; Aged, 80 and over ; Disease Progression ; Female ; Humans ; Liver Neoplasms/blood ; Liver Neoplasms/immunology ; Male ; Middle Aged ; Neoplasm Staging ; Prospective Studies ; Rectal Neoplasms/blood ; Rectal Neoplasms/pathology ; Tumor Microenvironment
مستخلص: Background: In colorectal cancer, the inflamed tumour microenvironment with its angiogenic activities is immune- tolerant and incites progression to liver metastasis. We hypothesised that angiogenic and inflammatory factors in serum samples from patients with non-metastatic rectal cancer could inform on liver metastasis risk.
Methods: We measured 84 angiogenic and inflammatory markers in serum sampled at the time of diagnosis within the population-based cohort of 122 stage I-III patients. In a stepwise manner, the statistically strongest proteins associated with time to development of liver metastasis were analysed in the corresponding serum samples from 273 stage II-III rectal cancer patients in three independent cohorts.
Results: We identified the soluble form of the costimulatory immune checkpoint receptor cluster of differentiation molecule 40 (sCD40) as a marker of liver metastasis risk across all patient cohorts-the higher the sCD40 level, the shorter time to liver metastasis. In patients receiving neoadjuvant treatment, the sCD40 value remained an independent variable associated with progression to liver metastasis along with the local treatment response. Of note, serum sCD40 was not associated with progression to lung metastasis.
Conclusions: Circulating sCD40 is a marker of liver metastasis risk in rectal cancer and may be developed for use in clinical practice.
(© 2021. The Author(s).)
References: Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). (PMID: 30207593)
Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S. & Tabernero, J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17, 79–92 (2017). (PMID: 2805001110.1038/nrc.2016.126)
Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015). (PMID: 26457759463648710.1038/nm.3967)
Punt, C. J., Koopman, M. & Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 14, 235–246 (2017). (PMID: 2792204410.1038/nrclinonc.2016.171)
Sveen, A., Kopetz, S. & Lothe, R. A. Biomarker-guided therapy for colorectal cancer: strength in complexity. Nat. Rev. Clin. Oncol. 17, 11–32 (2020). (PMID: 3128935210.1038/s41571-019-0241-1)
Pennel, K. A. F., Park, J. H., McMillan, D. C., Roseweir, A. K. & Edwards, J. Signal interaction between the tumour and inflammatory cells in patients with gastrointestinal cancer: Implications for treatment. Cell Signal 54, 81–90 (2019). (PMID: 3045301410.1016/j.cellsig.2018.11.013)
Chavakis, T., Cines, D. B., Rhee, J. S., Liang, O. D., Schubert, U., Hammes, H. P. et al. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. FASEB J. 18, 1306–1308 (2004). (PMID: 1520826910.1096/fj.03-1009fje)
Owen, J. L. & Mohamadzadeh, M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol. 4, 159 (2013). (PMID: 23847541370179910.3389/fphys.2013.00159)
Rahma, O. E. & Hodi, F. S. The intersection between tumor angiogenesis and immune suppression. Clin. Cancer Res. 25, 5449–5457 (2019). (PMID: 3094412410.1158/1078-0432.CCR-18-1543)
Lauret Marie Joseph, E., Laheurte, C., Jary, M., Boullerot, L., Asgarov, K., Gravelin, E. et al. Immunoregulation and clinical implications of ANGPT2/TIE2(+) M-MDSC signature in non-small cell lung cancer. Cancer Immunol. Res. 8, 268–279 (2020). (PMID: 3187112110.1158/2326-6066.CIR-19-0326)
Lee, J. W., Stone, M. L., Porrett, P. M., Thomas, S. K., Komar, C. A., Li, J. H. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567, 249–252 (2019). (PMID: 30842658643011310.1038/s41586-019-1004-y)
Stremitzer, S., Vermeulen, P., Graver, S., Kockx, M., Dirix, L., Yang, D. et al. Immune phenotype and histopathological growth pattern in patients with colorectal liver metastases. Br. J. Cancer https://doi.org/10.1038/s41416-020-0812-z (2020). (PMID: 10.1038/s41416-020-0812-z322058637217855)
Finn, R. S., Qin, S., Ikeda, M., Galle, P. R., Ducreux, M., Kim, T. Y. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020). (PMID: 32402160)
Kalanxhi, E., Hektoen, H. H., Meltzer, S., Dueland, S., Flatmark, K. & Ree, A. H. Circulating proteins in response to combined-modality therapy in rectal cancer identified by antibody array screening. BMC Cancer 16, 536 (2016). (PMID: 27461255496236710.1186/s12885-016-2601-x)
Augestad, K. M., Keller, D. S., Bakaki, P. M., Rose, J., Koroukian, S. M., Oresland, T. et al. The impact of rectal cancer tumor height on recurrence rates and metastatic location: a competing risk analysis of a national database. Cancer Epidemiol. 53, 56–64 (2018). (PMID: 2941463310.1016/j.canep.2018.01.009)
Stewart, C. L., Warner, S., Ito, K., Raoof, M., Wu, G. X., Kessler, J. et al. Cytoreduction for colorectal metastases: liver, lung, peritoneum, lymph nodes, bone, brain. When does it palliate, prolong survival, and potentially cure? Curr. Probl. Surg. 55, 330–379 (2018). (PMID: 30526930642235510.1067/j.cpsurg.2018.08.004)
Van Cutsem, E., Cervantes, A., Adam, R., Sobrero, A., Van Krieken, J. H., Aderka, D. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 27, 1386–1422 (2016). (PMID: 2738095910.1093/annonc/mdw235)
Taylor, F. G., Quirke, P., Heald, R. J., Moran, B. J., Blomqvist, L., Swift, I. R. et al. Preoperative magnetic resonance imaging assessment of circumferential resection margin predicts disease-free survival and local recurrence: 5-year follow-up results of the MERCURY study. J. Clin. Oncol. 32, 34–43 (2014). (PMID: 2427677610.1200/JCO.2012.45.3258)
Meltzer, S., Bakke, K. M., Rod, K. L., Negard, A., Flatmark, K., Solbakken, A. M. et al. Sex-related differences in primary metastatic site in rectal cancer; associated with hemodynamic factors? Clin. Transl. Radiat. Oncol. 21, 5–10 (2020). (PMID: 3187208410.1016/j.ctro.2019.11.006)
Mandard, A. M., Dalibard, F., Mandard, J. C., Marnay, J., Henry-Amar, M., Petiot, J. F. et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73, 2680–2686 (1994). (PMID: 819400510.1002/1097-0142(19940601)73:11<2680::AID-CNCR2820731105>3.0.CO;2-C)
Bouzourene, H., Bosman, F. T., Seelentag, W., Matter, M. & Coucke, P. Importance of tumor regression assessment in predicting the outcome in patients with locally advanced rectal carcinoma who are treated with preoperative radiotherapy. Cancer 94, 1121–1130 (2002). (PMID: 1192048310.1002/cncr.10327)
Bateman, A. C., Jaynes, E. & Bateman, A. R. Rectal cancer staging post neoadjuvant therapy-how should the changes be assessed? Histopathology 54, 713–721 (2009). (PMID: 1943874610.1111/j.1365-2559.2009.03292.x)
Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001). (PMID: 113094993317310.1073/pnas.091062498)
Park, J. H., Fuglestad, A. J., Kostner, A. H., Oliwa, A., Graham, J., Horgan, P. G. et al. Systemic inflammation and outcome in 2295 patients with stage I-III colorectal cancer from Scotland and Norway: first results from the ScotScan Colorectal Cancer Group. Ann. Surg. Oncol. https://doi.org/10.1245/s10434-020-08268-1 (2020). (PMID: 10.1245/s10434-020-08268-1331402548184531)
McMillan, D. C. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat. Rev. 39, 534–540 (2013). (PMID: 2299547710.1016/j.ctrv.2012.08.003)
Shen, H. H., Bai, B. K., Wang, Y. Q., Zhou, G., Hou, J., Hu, Y. et al. Serum soluble CD40 is associated with liver injury in patients with chronic hepatitis B. Exp. Ther. Med 9, 999–1005 (2015). (PMID: 25667667431696610.3892/etm.2015.2182)
Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Disco. 17, 509–527 (2018). (PMID: 10.1038/nrd.2018.75)
Yu, J., Green, M. D., Li, S., Sun, Y., Journey, S. N., Choi, J. E. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021). (PMID: 33398162809504910.1038/s41591-020-1131-x)
Maas, M., Nelemans, P. J., Valentini, V., Das, P., Rodel, C., Kuo, L. J. et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 11, 835–844 (2010). (PMID: 2069287210.1016/S1470-2045(10)70172-8)
Wan, T., Zhang, X. F., Liang, C., Liao, C. W., Li, J. Y. & Zhou, Y. M. The prognostic value of a pathologic complete response after neoadjuvant Therapy for digestive cancer: systematic review and meta-analysis of 21 studies. Ann. Surg. Oncol. 26, 1412–1420 (2019). (PMID: 3080580710.1245/s10434-018-07147-0)
Fokas, E., Allgauer, M., Polat, B., Klautke, G., Grabenbauer, G. G., Fietkau, R. et al. Randomized phase II trial of chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for locally advanced rectal cancer: CAO/ARO/AIO-12. J. Clin. Oncol. 37, 3212–3222 (2019). (PMID: 3115031510.1200/JCO.19.00308)
Siddiqa, A., Sims-Mourtada, J. C., Guzman-Rojas, L., Rangel, R., Guret, C., Madrid-Marina, V. et al. Regulation of CD40 and CD40 ligand by the AT-hook transcription factor AKNA. Nature 410, 383–387 (2001). (PMID: 1126821710.1038/35066602)
Hollenbaugh, D., Mischel-Petty, N., Edwards, C. P., Simon, J. C., Denfeld, R. W., Kiener, P. A. et al. Expression of functional CD40 by vascular endothelial cells. J. Exp. Med. 182, 33–40 (1995). (PMID: 754065510.1084/jem.182.1.33)
Lee, G. H., Askari, A., Malietzis, G., Bernardo, D., Clark, S. K., Knight, S. C. et al. The role of CD40 expression in dendritic cells in cancer biology; a systematic review. Curr. Cancer Drug Targets 14, 610–620 (2014). (PMID: 2516346910.2174/1568009614666140828103253)
Stamenkovic, I., Clark, E. A. & Seed, B. A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J. 8, 1403–1410 (1989). (PMID: 247534140096710.1002/j.1460-2075.1989.tb03521.x)
Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015). (PMID: 2561390010.1126/science.1260419)
Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T. & Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002). (PMID: 1221818812943810.1073/pnas.192461099)
Hirano, F., Kaneko, K., Tamura, H., Dong, H., Wang, S., Ichikawa, M. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65, 1089–1096 (2005). (PMID: 15705911)
Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006). (PMID: 1638223610.1038/nature04444)
Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Lao, C. D. et al. Five-year survival with combined nivolumab and Ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019). (PMID: 3156279710.1056/NEJMoa1910836)
Antonia, S. J., Borghaei, H., Ramalingam, S. S., Horn, L., De Castro Carpeno, J., Pluzanski, A. et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis. Lancet Oncol. 20, 1395–1408 (2019). (PMID: 31422028719368510.1016/S1470-2045(19)30407-3)
Andre, T., Shiu, K. K., Kim, T. W., Jensen, B. V., Jensen, L. H., Punt, C. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020). (PMID: 3326454410.1056/NEJMoa2017699)
Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012). (PMID: 22658128356326310.1056/NEJMoa1200694)
Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017). (PMID: 28596308557614210.1126/science.aan6733)
Kashyap, A. S., Schmittnaegel, M., Rigamonti, N., Pais-Ferreira, D., Mueller, P., Buchi, M. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc. Natl Acad. Sci. USA 117, 541–551 (2020). (PMID: 3188900410.1073/pnas.1902145116)
Rech, A. J., Dada, H., Kotzin, J. J., Henao-Mejia, J., Minn, A. J., Twyman-Saint Victor, C. et al. Radiotherapy and CD40 activation separately augment immunity to checkpoint blockade in cancer. Cancer Res. 78, 4282–4291 (2018). (PMID: 29844122641568410.1158/0008-5472.CAN-17-3821)
Hegde, S., Krisnawan, V. E., Herzog, B. H., Zuo, C., Breden, M. A., Knolhoff, B. L. et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37, 289–307 e289 (2020). (PMID: 32183949718133710.1016/j.ccell.2020.02.008)
De Paoli, P., Cozzi, M., Tedeschi, R., Gloghini, A., Cilia, A. M., van Kooten, C. et al. High CD40 membrane expression in AIDS-related lymphoma B cell lines is associated with the CD45RA+, CD45RO+, CD95+ phenotype and high levels of its soluble form in culture supernatants. Cytometry 30, 33–38 (1997). (PMID: 905674010.1002/(SICI)1097-0320(19970215)30:1<33::AID-CYTO5>3.0.CO;2-G)
Contin, C., Pitard, V., Itai, T., Nagata, S., Moreau, J. F. & Dechanet-Merville, J. Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. Implications for CD40 signaling. J. Biol. Chem. 278, 32801–32809 (2003). (PMID: 1281072810.1074/jbc.M209993200)
Klaus, S. J., Berberich, I., Shu, G. & Clark, E. A. CD40 and its ligand in the regulation of humoral immunity. Semin Immunol. 6, 279–286 (1994). (PMID: 753245810.1006/smim.1994.1036)
Contin, C., Pitard, V., Delmas, Y., Pelletier, N., Defrance, T., Moreau, J. F. et al. Potential role of soluble CD40 in the humoral immune response impairment of uraemic patients. Immunology 110, 131–140 (2003). (PMID: 12941150178302910.1046/j.1365-2567.2003.01716.x)
Ruter, J., Antonia, S. J., Burris, H. A., Huhn, R. D. & Vonderheide, R. H. Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol. Ther. 10, 983–993 (2010). (PMID: 20855968304709210.4161/cbt.10.10.13251)
Drabick, J. J. & Schell, T. D. Poking CD40 for cancer therapy, another example of the Goldilocks effect. Cancer Biol. Ther. 10, 994–996 (2010). (PMID: 2105720610.4161/cbt.10.10.13976)
Rothstein, T. L., Zhong, X., Schram, B. R., Negm, R. S., Donohoe, T. J., Cabral, D. S. et al. Receptor-specific regulation of B-cell susceptibility to Fas-mediated apoptosis and a novel Fas apoptosis inhibitory molecule. Immunol. Rev. 176, 116–133 (2000). (PMID: 1104377210.1034/j.1600-065X.2000.00616.x)
Gao, Y., Bado, I., Wang, H., Zhang, W., Rosen, J. M. & Zhang, X. H. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019). (PMID: 31063756650618910.1016/j.devcel.2019.04.012)
المشرفين على المادة: 0 (Biomarkers, Tumor)
0 (CD40 Antigens)
تواريخ الأحداث: Date Created: 20210410 Date Completed: 20211210 Latest Revision: 20230130
رمز التحديث: 20230131
مُعرف محوري في PubMed: PMC8292313
DOI: 10.1038/s41416-021-01377-y
PMID: 33837301
قاعدة البيانات: MEDLINE
الوصف
تدمد:1532-1827
DOI:10.1038/s41416-021-01377-y