دورية أكاديمية

Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline.

التفاصيل البيبلوغرافية
العنوان: Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline.
المؤلفون: Ferreira LRP; RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.; National Institute of Science and Technology for Vaccines (INCTV), Belo Horizonte, Minas Gerais, Brazil., Correia CJ; Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., Zanoni FL; Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., Carvalho-Silva AC; RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.; National Institute of Science and Technology for Vaccines (INCTV), Belo Horizonte, Minas Gerais, Brazil., Zaniratto R; Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.; Institute for Investigation in Immunology (INCT-iii), São Paulo, Brazil., da Silva Cândido D; Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.; Institute for Investigation in Immunology (INCT-iii), São Paulo, Brazil., Almeida RR; Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.; Institute for Investigation in Immunology (INCT-iii), São Paulo, Brazil., Breithaupt-Faloppa AC; Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., Cunha-Neto E; Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.; Institute for Investigation in Immunology (INCT-iii), São Paulo, Brazil.; Laboratório de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., Moreira LFP; Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
المصدر: Transplantation [Transplantation] 2022 Feb 01; Vol. 106 (2), pp. 289-298.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 0132144 Publication Model: Print Cited Medium: Internet ISSN: 1534-6080 (Electronic) Linking ISSN: 00411337 NLM ISO Abbreviation: Transplantation Subsets: MEDLINE
أسماء مطبوعة: Publication: Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: Baltimore, Williams & Wilkins.
مواضيع طبية MeSH: Heart Transplantation*/adverse effects , MicroRNAs*/genetics, Animals ; Brain Death ; Humans ; Rats ; Rats, Wistar ; Saline Solution, Hypertonic/pharmacology ; Saline Solution, Hypertonic/therapeutic use ; Tissue Donors
مستخلص: Background: Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment.
Methods: Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6 h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs in the heart, and computational and functional analyses were performed to compare the differentially expressed miRNAs and find their putative targets and their related enriched canonical pathways.
Results: An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with 2 miRNAs, miR-30a-3p, and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function.
Conclusions: These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD-induced miRNA's on early and late cardiac allograft function must be investigated.
Competing Interests: The authors declare no conflicts of interest.
(Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.)
References: Tryon D, Hasaniya NW, Jabo B, et al. Effect of left ventricular dysfunction on utilization of donor hearts. J Heart Lung Transplant. 2018;37:349–357.
Birks EJ, Yacoub MH, Burton PS, et al. Activation of apoptotic and inflammatory pathways in dysfunctional donor hearts. Transplantation. 2000;70:1498–1506.
Trivedi JR, Cheng A, Gallo M, et al. Predictors of donor heart utilization for transplantation in United States. Ann Thorac Surg. 2017;103:1900–1906.
Toldo S, Quader M, Salloum FN, et al. Targeting the innate immune response to improve cardiac graft recovery after heart transplantation: implications for the donation after cardiac death. Int J Mol Sci. 2016;17:E958.
Marasco SF, Sheeran FL, Chaudhuri K, et al. Molecular markers of programmed cell death in donor hearts before transplantation. J Heart Lung Transplant. 2014;33:185–193.
Chen C, Ponnusamy M, Liu C, et al. MicroRNA as a therapeutic target in cardiac remodeling. Biomed Res Int. 2017;2017:1278436.
Sucharov CC, Kao DP, Port JD, et al. Myocardial microRNAs associated with reverse remodeling in human heart failure. JCI Insight. 2017;2:e89169.
Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. Annu Rev Pathol. 2019;14:211–238.
Magalhães DMS, Zanoni FL, Correia CJ, et al. Hypertonic saline modulates heart function and myocardial inflammatory alterations in brain-dead rats. J Surg Res. 2019;235:8–15.
Ling Q, Xie H, Li J, et al. Donor graft MicroRNAs: a newly identified player in the development of new-onset diabetes after liver transplantation. Am J Transplant. 2017;17:255–264.
Roest HP, Ooms LSS, Gillis AJM, et al. Cell-free MicroRNA miR-505-3p in graft preservation fluid is an independent predictor of delayed graft function after kidney transplantation. Transplantation. 2019;103:329–335.
Glover EK, Jordan N, Sheerin NS, et al. Regulation of endothelial-to-mesenchymal transition by MicroRNAs in chronic allograft dysfunction. Transplantation. 2019;103:e64–e73.
Tingle SJ, Sewpaul A, Bates L, et al. Dual MicroRNA blockade increases expression of antioxidant protective proteins: implications for ischemia-reperfusion injury. Transplantation. 2020;104:1853–1861.
Zhou M, Hara H, Dai Y, et al. Circulating organ-specific MicroRNAs serve as biomarkers in organ-specific diseases: implications for organ Allo- and Xeno-transplantation. Int J Mol Sci. 2016;17:E1232.
Roca-Alonso L, Castellano L, Mills A, et al. Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β-adrenergic signaling and enhances apoptosis. Cell Death Dis. 2015;6:e1754.
Yin Y, Yang C. miRNA-30-3p improves myocardial ischemia via the PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 2019;120:17326–17336.
Si H, Zhang Y, Song Y, et al. Overexpression of adrenomedullin protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis via the Akt/GSK3β and Bcl-2 signaling pathways. Int J Mol Med. 2018;41:3342–3352.
Wei H, Vander Heide RS. Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008;295:H561–H568.
Xing R, Liu D, Cheng X, et al. MiR-207 inhibits autophagy and promotes apoptosis of cardiomyocytes by directly targeting LAMP2 in type 2 diabetic cardiomyopathy. Biochem Biophys Res Commun. 2019;520:27–34.
Li M, Chen X, Chen L, et al. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J Transl Med. 2018;16:161.
He R, Ding C, Yin P, et al. MiR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1. Exp Cell Res. 2019;378:87–97.
Bayoumi AS, Park KM, Wang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cell Cardiol. 2018;114:72–82.
Correia CJ, Armstrong R Jr, Carvalho PO, et al. Hypertonic saline solution reduces microcirculatory dysfunction and inflammation in a Rat model of brain death. Shock. 2019;51:495–501.
Li Y, Wu X, Gao F, et al. MiR-197-3p regulates endothelial cell proliferation and migration by targeting IGF1R and BCL2 in Kawasaki disease. Int J Clin Exp Pathol. 2019;12:4181–4192.
Wang X, Sundquist K, Svensson PJ, et al. Association of recurrent venous thromboembolism and circulating microRNAs. Clin Epigenetics. 2019;11:28.
Bhattacharyya S, Sul K, Krukovets I, et al. Novel tissue-specific mechanism of regulation of angiogenesis and cancer growth in response to hyperglycemia. J Am Heart Assoc. 2012;1:e005967.
Feng B, Cao Y, Chen S, et al. miR-200b mediates endothelial-to-mesenchymal transition in diabetic cardiomyopathy. Diabetes. 2016;65:768–779.
Zhang X, Dong S, Jia Q, et al. The microRNA in ventricular remodeling: the MIR-30 family. Biosci Rep. 2019;39:BSR20190788.
Yang J, Popoola J, Khandwala S, et al. Critical role of donor tissue expression of programmed death ligand-1 in regulating cardiac allograft rejection and vasculopathy. Circulation. 2008;117:660–669.
Dangi A, Yu S, Luo X. Apoptotic cell-based therapies for promoting transplantation tolerance. Curr Opin Organ Transplant. 2018;23:552–558.
Korkmaz-Icöz S, Li K, Loganathan S, et al. Brain-dead donor heart conservation with a preservation solution supplemented by a conditioned medium from mesenchymal stem cells improves graft contractility after transplantation. Am J Transplant. 2020;20:2847–2856.
Yuan X, Teng X, Wang Y, et al. Recipient treatment with acetylcholinesterase inhibitor donepezil attenuates primary graft failure in rats through inhibiting post-transplantational donor heart ischaemia/reperfusion injury. Eur J Cardiothorac Surg. 2018;53:400–408.
Roset F, Ureña JM, Cotrufo T, et al. Treatment of donor Rat hearts prior to transplantation with FLIP (FADD-Like Interleukin beta-converting enzyme (FLICE)-Like inhibitory protein) in cardioplegic solution decreased apoptosis at thirty minutes post-transplantation and decreased total tyrosine phosphorylation levels. Ann Transplant. 2018;23:144–152.
Wei J, Chen S, Xue S, et al. Blockade of inflammation and apoptosis pathways by siRNA prolongs cold preservation time and protects donor hearts in a porcine model. Mol Ther Nucleic Acids. 2017;9:428–439.
Zhou L, Zang G, Zhang G, et al. MicroRNA and mRNA signatures in ischemia reperfusion injury in heart transplantation. PLoS One. 2013;8:e79805.
Heggermont WA, Delrue L, Dierickx K, et al. Low MicroRNA-126 levels in right ventricular endomyocardial biopsies coincide with cardiac allograft vasculopathy in heart transplant patients. Transplant Direct. 2020;6:e549.
Sukma Dewi I, Hollander Z, Lam KK, et al. Association of serum MiR-142-3p and MiR-101-3p levels with acute cellular rejection after heart transplantation. PLoS One. 2017;12:e0170842.
Mas VR, Dumur CI, Scian MJ, et al. MicroRNAs as biomarkers in solid organ transplantation. Am J Transplant. 2013;13:11–19.
Singh N, Heggermont W, Fieuws S, et al. Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J Heart Lung Transplant. 2015;34:1376–1384.
Almufleh A, Zhang L, Mielniczuk LM, et al. Biomarker discovery in cardiac allograft vasculopathy using targeted aptamer proteomics. Clin Transplant. 2020;34:e13765.
Chen Y, Zhou ZF, Wang Y. Prediction and analysis of weighted genes in isoflurane induced general anesthesia based on network analysis. Int J Neurosci. 2020;130:610–620.
المشرفين على المادة: 0 (MicroRNAs)
0 (Saline Solution, Hypertonic)
تواريخ الأحداث: Date Created: 20210416 Date Completed: 20220328 Latest Revision: 20220401
رمز التحديث: 20240829
DOI: 10.1097/TP.0000000000003779
PMID: 33859149
قاعدة البيانات: MEDLINE
الوصف
تدمد:1534-6080
DOI:10.1097/TP.0000000000003779