دورية أكاديمية

Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects.

التفاصيل البيبلوغرافية
العنوان: Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects.
المؤلفون: Franken GAC; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands., Seker M; Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany., Bos C; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands., Siemons LAH; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands., van der Eerden BCJ; Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands., Christ A; Department of Molecular Cardiovascular Research, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany., Hoenderop JGJ; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands., Bindels RJM; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands., Müller D; Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany., Breiderhoff T; Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany., de Baaij JHF; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands. jeroen.debaaij@radboudumc.nl.
المصدر: Scientific reports [Sci Rep] 2021 Apr 15; Vol. 11 (1), pp. 8217. Date of Electronic Publication: 2021 Apr 15.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Cation Transport Proteins/*genetics , Intellectual Disability/*genetics , Magnesium Deficiency/*genetics, Animals ; Animals, Newborn ; Embryo, Mammalian ; Female ; Intellectual Disability/blood ; Intellectual Disability/complications ; Intellectual Disability/pathology ; Magnesium/blood ; Magnesium Deficiency/blood ; Magnesium Deficiency/complications ; Magnesium Deficiency/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Pregnancy ; Seizures/blood ; Seizures/complications ; Seizures/genetics
مستخلص: Patients with mutations in Cyclin M2 (CNNM2) suffer from hypomagnesaemia, seizures, and intellectual disability. Although the molecular function of CNNM2 is under debate, the protein is considered essential for renal Mg 2+ reabsorption. Here, we used a Cnnm2 knock out mouse model, generated by CRISPR/Cas9 technology, to assess the role of CNNM2 in Mg 2+ homeostasis. Breeding Cnnm2 +/- mice resulted in a Mendelian distribution at embryonic day 18. Nevertheless, only four Cnnm2 -/- pups were born alive. The Cnnm2 -/- pups had a significantly lower serum Mg 2+ concentration compared to wildtype littermates. Subsequently, adult Cnnm2 +/- mice were fed with low, control, or high Mg 2+ diets for two weeks. Adult Cnnm2 +/- mice showed mild hypomagnesaemia compared to Cnnm2 +/+ mice and increased serum Ca 2+ levels, independent of dietary Mg 2+ intake. Faecal analysis displayed increased Mg 2+ and Ca 2+ excretion in the Cnnm2 +/- mice. Transcriptional profiling of Trpm6, Trpm7, and Slc41a1 in kidneys and colon did not reveal effects based on genotype. Microcomputed tomography analysis of the femurs demonstrated equal bone morphology and density. In conclusion, CNNM2 is vital for embryonic development and Mg 2+ homeostasis. Our data suggest a previously undescribed role of CNNM2 in the intestine, which may contribute to the Mg 2+ deficiency in mice and patients.
References: de Baaij, J. H., Hoenderop, J. G. & Bindels, R. J. Magnesium in man: implications for health and disease. Physiol. Rev. 95(1), 1–46 (2015). (PMID: 2554013710.1152/physrev.00012.2014)
Quamme, G. A. & Dirks, J. H. Magnesium transport in the nephron. Am. J. Physiol. 239(5), F393-401 (1980). (PMID: 7435614)
Groenestege, W. M. et al. The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J. Am. Soc. Nephrol. 17(4), 1035–1043 (2006). (PMID: 1652494910.1681/ASN.2005070700)
Thebault, S. et al. EGF increases TRPM6 activity and surface expression. J. Am. Soc. Nephrol. 20(1), 78–85 (2009). (PMID: 19073827261573610.1681/ASN.2008030327)
Woudenberg-Vrenken, T. E. et al. Transient receptor potential melastatin 6 knockout mice are lethal whereas heterozygous deletion results in mild hypomagnesemia. Nephron Physiol. 117(2), 11–19 (2011). (PMID: 10.1159/000320580)
Mittermeier, L. et al. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc. Natl. Acad. Sci. 116(10), 4706–4715 (2019). (PMID: 3077044710.1073/pnas.18106331166410795)
Li, M., Jiang, J. & Yue, L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J. Gen. Physiol. 127(5), 525–537 (2006). (PMID: 16636202215151910.1085/jgp.200609502)
de Baaij, J. H. F. et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J. Biol. Chem. 287(17), 13644–13655 (2012). (PMID: 22399287334018010.1074/jbc.M112.342204)
Arjona, F. J. & de Baaij, J. H. F. CrossTalk opposing view: CNNM proteins are not Na(+) /Mg(2+) exchangers but Mg(2+) transport regulators playing a central role in transepithelial Mg(2+) (re)absorption. J. Physiol. 596(5), 747–750 (2018). (PMID: 29383729583041610.1113/JP275249)
Arjona, F. J. & de Baaij, J. H. F. Rebuttal from Francisco J. Arjona and Jeroen H. F. de Baaij. J. Physiol. 596(5), 753–754 (2018). (PMID: 29383734583043110.1113/JP275705)
Sponder, G. et al. Human CNNM2 is not a Mg(2+) transporter per se. Pflugers Arch. 468(7), 1223–1240 (2016). (PMID: 2706840310.1007/s00424-016-1816-7)
Accogli, A. et al. CNNM2 homozygous mutations cause severe refractory hypomagnesemia, epileptic encephalopathy and brain malformations. Eur. J. Med. Genet. 62(3), 198–203 (2019). (PMID: 3002605510.1016/j.ejmg.2018.07.014)
Arjona, F. J. et al. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet. 10(4), e1004267 (2014). (PMID: 24699222397467810.1371/journal.pgen.1004267)
Stuiver, M. et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am. J. Hum. Genet. 88(3), 333–343 (2011). (PMID: 21397062305943210.1016/j.ajhg.2011.02.005)
Li, C. et al. Genome-wide association study meta-analysis of long-term average blood pressure in East Asians. Circ. Cardiovasc. Genet. 10(2), e001527–e001527 (2017). (PMID: 28348047570491110.1161/CIRCGENETICS.116.001527)
Lv, W.-Q. et al. Novel common variants associated with body mass index and coronary artery disease detected using a pleiotropic cFDR method. J. Mol. Cell. Cardiol. 112, 1–7 (2017). (PMID: 28843344581227810.1016/j.yjmcc.2017.08.011)
Ohi, K. et al. The impact of the genome-wide supported variant in the cyclin M2 gene on gray matter morphology in schizophrenia. Behav. Brain Funct. BBF 9, 40–40 (2013). (PMID: 2416029110.1186/1744-9081-9-40)
Rose, E. J. et al. Effects of a novel schizophrenia risk variant rs7914558 at CNNM2 on brain structure and attributional style. Br. J. Psychiatry 204(2), 115–121 (2014). (PMID: 2431155110.1192/bjp.bp.113.131359)
Funato, Y., Yamazaki, D. & Miki, H. Renal function of cyclin M2 Mg2+ transporter maintains blood pressure. J. Hypertens. 35(3), 585–592 (2017). (PMID: 2803312810.1097/HJH.0000000000001211)
Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4), 910–918 (2013). (PMID: 23643243396985410.1016/j.cell.2013.04.025)
Lorenz, C., Pusch, M. & Jentsch, T. J. Heteromultimeric CLC chloride channels with novel properties. Proc. Natl. Acad. Sci. U. S. A. 93(23), 13362–13366 (1996). (PMID: 89175962409810.1073/pnas.93.23.13362)
Hoenderop, J. G. J. et al. Calcitriol controls the epithelial calcium channel in kidney. J. Am. Soc. Nephrol. 12(7), 1342 (2001). (PMID: 1142356310.1681/ASN.V1271342)
Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25(7), 1468–1486 (2010). (PMID: 2053330910.1002/jbmr.141)
de Baaij, J. H. et al. Identification of SLC41A3 as a novel player in magnesium homeostasis. Sci. Rep. 6, 28565 (2016). (PMID: 27349617492387710.1038/srep28565)
Kurstjens, S. et al. Renal phospholipidosis and impaired magnesium handling in high-fat-diet–fed mice. FASEB J. 33(6), 7192–7201 (2019). (PMID: 3084894010.1096/fj.201801778RR)
Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567(7746), 49–55 (2019). (PMID: 3081473510.1038/s41586-019-0992-y)
Wang, Y. et al. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J. Exp. Med. 217(2) (2019).
Funato, Y. et al. Membrane protein CNNM4-dependent Mg2+ efflux suppresses tumor progression. J. Clin. Investig. 124(12), 5398–5410 (2014). (PMID: 2534747310.1172/JCI766144348944)
Yamazaki, D. et al. Cnnm4 deficiency suppresses Ca2+ signaling and promotes cell proliferation in the colon epithelia. Oncogene 38(20), 3962–3969 (2019). (PMID: 3067077610.1038/s41388-019-0682-0)
Yamazaki, D. et al. Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet. 9(12), e1003983 (2013). (PMID: 24339795385494210.1371/journal.pgen.1003983)
Chubanov, V. et al. Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5, e20914 (2016). (PMID: 27991852521853710.7554/eLife.20914)
Breiderhoff, T. et al. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. Proc. Natl. Acad. Sci. U. S. A. 109(35), 14241–14246 (2012). (PMID: 22891322343518310.1073/pnas.1203834109)
Dimke, H. et al. Activation of the Ca(2+)-sensing receptor increases renal claudin-14 expression and urinary Ca(2+) excretion. Am. J. Physiol. Renal Physiol. 304(6), F761–F769 (2013). (PMID: 2328398910.1152/ajprenal.00263.2012)
Gong, Y. et al. Claudin-14 regulates renal Ca ++ transport in response to CaSR signalling via a novel microRNA pathway. Embo J. 31(8), 1999–2012 (2012). (PMID: 22373575334333410.1038/emboj.2012.49)
Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl. Acad. Sci. U. S. A. 106(36), 15350–15355 (2009). (PMID: 19706394274125410.1073/pnas.0907724106)
Ohta, H. et al. Restricted localization of claudin-16 at the tight junction in the thick ascending limb of Henle’s loop together with claudins 3, 4, and 10 in bovine nephrons. J. Vet. Med. Sci. 68(5), 453–463 (2006). (PMID: 1675788810.1292/jvms.68.453)
García-Castaño, A. et al. Novel variant in the CNNM2 gene associated with dominant hypomagnesemia. PLoS ONE 15(9), e0239965 (2020). (PMID: 32997713752720510.1371/journal.pone.0239965)
Copp, A. J. & Greene, N. D. E. Neural tube defects–disorders of neurulation and related embryonic processes. Wiley Interdiscip. Rev. Dev. Biol. 2(2), 213–227 (2013). (PMID: 2400903410.1002/wdev.71)
Walder, R. Y. et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum. Mol. Genet. 18(22), 4367–4375 (2009). (PMID: 19692351276629510.1093/hmg/ddp392)
Jin, J. et al. The channel kinase, TRPM7, is required for early embryonic development. Proc. Natl. Acad. Sci. U. S. A. 109(5), E225–E233 (2012). (PMID: 2220399710.1073/pnas.1120033109)
Liu, W. et al. TRPM7 regulates gastrulation during vertebrate embryogenesis. Dev. Biol. 350(2), 348–357 (2011). (PMID: 2114588510.1016/j.ydbio.2010.11.034)
Reichold, M. et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc. Natl. Acad. Sci. U. S. A. 107(32), 14490–14495 (2010). (PMID: 20651251292259910.1073/pnas.1003072107)
Arystarkhova, E. et al. Paradoxical activation of the sodium chloride cotransporter (NCC) without hypertension in kidney deficient in a regulatory subunit of Na, K-ATPase, FXYD2. Physiol. Rep. 2(12), e12226 (2014). (PMID: 25472608433220810.14814/phy2.12226)
de Baaij, J. H. et al. Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrol. Dial Transplant. 30(6), 952–957 (2015). (PMID: 2576584610.1093/ndt/gfv014)
Jones, D. H. et al. Na, K-ATPase from mice lacking the gamma subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J. Biol. Chem. 280(19), 19003–19011 (2005). (PMID: 1575573010.1074/jbc.M500697200)
Meij, I. C. et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+), K(+)-ATPase gamma-subunit. Nat. Genet. 26(3), 265–266 (2000). (PMID: 1106245810.1038/81543)
المشرفين على المادة: 0 (Cation Transport Proteins)
0 (Cnnm2 protein, mouse)
I38ZP9992A (Magnesium)
تواريخ الأحداث: Date Created: 20210416 Date Completed: 20211203 Latest Revision: 20230131
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8050252
DOI: 10.1038/s41598-021-87548-6
PMID: 33859252
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-021-87548-6